《视觉SLAM十四讲》学习笔记-第四讲部分习题的证明思路


1 验证SO(3)、SE(3) 和Sim(3) 关于乘法成群
证明:
先看SO(3). 定义为:

SO(3)={RR3×3|RR=I,det(R)=1} S O ( 3 ) = { R ∈ R 3 × 3 | R R ⊤ = I , det ( R ) = 1 }

  • 假设 R1,R2SO(3) R 1 , R 2 ∈ S O ( 3 ) , 先证明 R1R2SO(3) R 1 ∗ R 2 ∈ S O ( 3 ) :

    R1R2(R1R2)=R1R2R2R1=I R 1 ∗ R 2 ∗ ( R 1 ∗ R 2 ) ⊤ = R 1 ∗ R 2 R 2 ⊤ ∗ R 1 ⊤ = I

    再证其行列式为1:
    det(R1R2)=det(R1)det(R2)=1 det ( R 1 ∗ R 2 ) = det ( R 1 ) ⋅ det ( R 2 ) = 1

    所以 R1,R2SO(3)R1R2SO(3) R 1 , R 2 ∈ S O ( 3 ) ⇒ R 1 ∗ R 2 ∈ S O ( 3 ) .

  • 根据矩阵乘法,显然:

    (R1R2)R3=R1(R2R3) ( R 1 ∗ R 2 ) ∗ R 3 = R 1 ∗ ( R 2 ∗ R 3 )

  • 存在 I0R3×3 I 0 ∈ R 3 × 3 (单位矩阵), 使得:

    I0R=RI0=R I 0 ∗ R = R ∗ I 0 = R

    所以玄元为 I0 I 0 .

  • 根据定义 RR=I R R ⊤ = I , 所以逆为

    R1=RSO(3) R − 1 = R ⊤ ∈ S O ( 3 )

SE(3)的定义为:

SE(3)={T=[R0⃗ t⃗ 1]R4×4|RSO(3),t⃗ R3} S E ( 3 ) = { T = [ R t → 0 → 1 ] ∈ R 4 × 4 | R ∈ S O ( 3 ) , t → ∈ R 3 }

- 假设 T1,T2SE(3) T 1 , T 2 ∈ S E ( 3 ) , 证明 T1T2SE(3) T 1 ∗ T 2 ∈ S E ( 3 ) :
T1T2=[R10⃗ t⃗ 11][R20⃗ t⃗ 21]=[R1R20⃗ R1t⃗ 2+t⃗ 11] T 1 ∗ T 2 = [ R 1 t → 1 0 → 1 ] ∗ [ R 2 t → 2 0 → 1 ] = [ R 1 ∗ R 2 R 1 t → 2 + t → 1 0 → 1 ]

上述式子中,
R1,R2SO(3) R 1 , R 2 ∈ S O ( 3 ) , R1R2SO(3) R 1 ∗ R 2 ∈ S O ( 3 ) 已获得证明;
R1t⃗ 2+t⃗ 1R3 R 1 t → 2 + t → 1 ∈ R 3 .
满足SE(3)的定义。

  • 同样根据矩阵乘法原理, R1,R2,R3SO(3) R 1 , R 2 , R 3 ∈ S O ( 3 ) ,
    (R1R2)R3=R1(R2R3) ( R 1 ∗ R 2 ) ∗ R 3 = R 1 ∗ ( R 2 ∗ R 3 )
  • SE(3)的玄元为 I0R4×4 I 0 ∈ R 4 × 4
  • SE(3)在乘法下的逆为:
    T1=[R0⃗ t⃗ 1]1=[R0⃗ R1t⃗ 1]=[R0⃗ Rt⃗ 1] T − 1 = [ R t → 0 → 1 ] − 1 = [ R ⊤ − R − 1 t → 0 → 1 ] = [ R ⊤ − R ⊤ t → 0 → 1 ]

    Sim(3)的证明与SE(3)很类似,限于篇幅就不展开了。

2 验证 (R3,R,×) ( R 3 , R , × ) 构成李代数
前面文章已证。

3 **验证 so(3) s o ( 3 ) se(3) s e ( 3 ) 满足李代数要求的性质
so(3) s o ( 3 ) 已在前面文章中证明。下面只证明 se(3) s e ( 3 ) **.

4 证明式(4.20)与(4.21).
- 证明式(4.20)

a⃗ =0a3a2a30a1a2a10 a → ∧ = ( 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 )

所以,
a⃗ a⃗ =a22a32a1a2a1a3a1a2a12a32a2a3a1a3a2a3a12a22 a → ∧ a → ∧ = ( − a 2 2 − a 3 2 a 1 a 2 a 1 a 3 a 1 a 2 − a 1 2 − a 3 2 a 2 a 3 a 1 a 3 a 2 a 3 − a 1 2 − a 2 2 )

另外,
a⃗ a⃗ I=a1conj(a1)1a2conj(a1)a3conj(a1)a1conj(a2)a2conj(a2)1a3conj(a2)a1conj(a3)a2conj(a3)a3conj(a3)1 a → a → ⊤ − I = ( a 1 c o n j ( a 1 ) − 1 a 1 c o n j ( a 2 ) a 1 c o n j ( a 3 ) a 2 c o n j ( a 1 ) a 2 c o n j ( a 2 ) − 1 a 2 c o n j ( a 3 ) a 3 c o n j ( a 1 ) a 3 c o n j ( a 2 ) a 3 c o n j ( a 3 ) − 1 )

因为 a⃗  a → 单位长为1,所以 a21+a22+a23=1 a 1 2 + a 2 2 + a 3 2 = 1 ,所以 a⃗ a⃗ =a⃗ a⃗ I a → ∧ a → ∧ = a → a → ⊤ − I .

  • 证明式(4.21)
    a⃗ a⃗ a⃗ =0a3a22a3(a12+a32)a2a32+a2(a12+a22)a3a12+a3(a22+a32)0a1a32a1(a12+a22)a2a12a2(a22+a32)a1a22+a1(a12+a32)0 a → ∧ a → ∧ a → ∧ = ( 0 a 3 a 1 2 + a 3 ( a 2 2 + a 3 2 ) − a 2 a 1 2 − a 2 ( a 2 2 + a 3 2 ) − a 3 a 2 2 − a 3 ( a 1 2 + a 3 2 ) 0 a 1 a 2 2 + a 1 ( a 1 2 + a 3 2 ) a 2 a 3 2 + a 2 ( a 1 2 + a 2 2 ) − a 1 a 3 2 − a 1 ( a 1 2 + a 2 2 ) 0 )

    注意到 a21+a22+a23=1 a 1 2 + a 2 2 + a 3 2 = 1 ,且
    a⃗ =0a3a2a30a1a2a10 − a → ∧ = ( 0 a 3 − a 2 − a 3 0 a 1 a 2 − a 1 0 )

    所以: a⃗ a⃗ a⃗ =a⃗  a → ∧ a → ∧ a → ∧ = − a → ∧

5 验证 Rp⃗ R=(Rp⃗ ) R p → ∧ R ⊤ = ( R p → ) ∧ .
证明比较难,暂没有时间钻研,留待以后再补上。
6 比较重要的几个公式

(1)

Rp⃗ R=(Rp⃗ ) R p → ∧ R ⊤ = ( R p → ) ∧

(2) SO(3)的伴随

Rexp(p⃗ )R=exp((Rp⃗ )) R exp ⁡ ( p → ∧ ) R ⊤ = exp ⁡ ( ( R p → ) ∧ )

(3) SE(3)的伴随性质
Texp(ξ)T1=exp((Ad(T)ξ)) T exp ⁡ ( ξ ) T − 1 = exp ⁡ ( ( A d ( T ) ξ ) ∧ )

其中:
Ad(T)=[R0t⃗ RR] A d ( T ) = [ R t → ∧ R 0 R ]

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值