李代数的导数

扰动模型

BCH公式与近似模型

李群李代数的关系已知,当我们将两个李群的矩阵相乘时,李代数的运算应该时什么呢。
我们知道李群的形式为:在这里插入图片描述
对于上式,我们等价变换:
在这里插入图片描述
那么这个式子是否成立呢,显然在标量时是成立的,但是在矩阵形式时不成立,应该以BCH(baker Campbell hausdorff)给出:
在这里插入图片描述
其中[,]为李括号,李括号的运算为:
在这里插入图片描述
BCH公式中,当向量为小量时,小量二次以上的项都将被忽略,所以BCH公式的近似表达式为:
在这里插入图片描述
近似的BCH公式按φ的大小不同,可以将两式分为左乘和右乘。
左乘时,近似雅可比可以表示成下式:
在这里插入图片描述
它的逆为:
在这里插入图片描述
右乘时为:
在这里插入图片描述
假定对某个旋转R,对应的李代数为φ,为它左乘一个微小旋转△R,对应的李代数为△φ,那么李群与李代数的关系可以简单写成:
在这里插入图片描述
相应的李代数的加法与李群的乘法之间的关系:
在这里插入图片描述
同理在SE3的李群与se3的李代数的关系为:在这里插入图片描述

通过以上的知识我们就可以计算李代数的导数。
SO(3)李代数上的求导,假设对空间点p进行旋转,可以在相机坐标系下得到Rp,计算旋转之后的坐标,相对与旋转之间的导数,而旋转矩阵不能求导,所以转变为李代数进行求导:
在这里插入图片描述
按照导数的定义可以得到:
在这里插入图片描述
上式中我们可以看到,通过第一行与第二行是近似BCH公式的李群与李代数之间的运算,而第三行是泰勒公式展开去除二阶以上得到的结果,四到五行为叉积运算之后的结果,因为叉积的运算,axb=-bxa。
所以可以得到第四行与第五行的过程。
可以看出上式的有一个J的形式比较发杂,可以用扰动的方式消除,计算方式如下如下:
在这里插入图片描述

扰动模型

对旋转矩阵R进行一次扰动△R,这个扰动左乘,设对应的△R的李代数为φ,则对φ求导可以得到:
在这里插入图片描述
根据前面推导的过程,可以知道第二行到第三行之间是因为泰勒公式的展开:
在这里插入图片描述
同理:

SE(3)上的李代数求导

可以通过增加扰动的方式计算,如下:在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值