《视觉SLAM十四讲》学习笔记-两个三维向量的李括号(即公式4.12)是李代数的验证

本文探讨了由向量生成的反对称矩阵及其李括号运算的性质,包括封闭性、双线性、自反性和雅可比等价。通过矩阵乘法和向量运算,证明了这些性质的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

证明:

每个 ϕ ϕ 生成的反对称矩阵记为 Φ Φ :

Φ=ϕ=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ103×3 Φ = ϕ ∨ = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ] ∈ R 3 × 3

根据此定义,两个向量的李括号表示为:
[Φ1,Φ2]=(Φ1Φ2Φ2Φ1) [ Φ 1 , Φ 2 ] = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨

1) 封闭性
根据定义展开式子:
Φ1,Φ23 ∀ Φ 1 , Φ 2 ∈ R 3 ,
=(Φ1Φ2Φ2Φ1)=0ϕ11ϕ22ϕ12ϕ21ϕ11ϕ23ϕ13ϕ21ϕ12ϕ21ϕ11ϕ220ϕ12ϕ23ϕ13ϕ22ϕ13ϕ21ϕ11ϕ23ϕ13ϕ22ϕ12ϕ230 = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨ = [ 0 ϕ 2 1 ∗ ϕ 1 2 − ϕ 1 1 ∗ ϕ 2 2 ϕ 3 1 ∗ ϕ 1 2 − ϕ 1 1 ∗ ϕ 3 2 ϕ 1 1 ∗ ϕ 2 2 − ϕ 2 1 ∗ ϕ 1 2 0 ϕ 3 1 ∗ ϕ 2 2 − ϕ 2 1 ∗ ϕ 3 2 ϕ 1 1 ∗ ϕ 3 2 − ϕ 3 1 ∗ ϕ 1 2 ϕ 2 1 ∗ ϕ 3 2 − ϕ 3 1 ∗ ϕ 2 2 0 ] ∨

ϕ11ϕ22ϕ12ϕ21=ϕ¯3 ϕ 1 1 ∗ ϕ 2 2 − ϕ 2 1 ∗ ϕ 1 2 = ϕ ¯ 3 , ϕ13ϕ21ϕ11ϕ23=ϕ¯2 ϕ 3 1 ∗ ϕ 1 2 − ϕ 1 1 ∗ ϕ 3 2 = ϕ ¯ 2 , ϕ12ϕ23ϕ13ϕ22=ϕ¯1 ϕ 2 1 ∗ ϕ 3 2 − ϕ 3 1 ∗ ϕ 2 2 = ϕ ¯ 1
则上式变为:

[Φ1,Φ2]=[ϕ¯1,ϕ¯2,ϕ¯3]3 [ Φ 1 , Φ 2 ] = [ ϕ ¯ 1 , ϕ ¯ 2 , ϕ ¯ 3 ] ∈ R 3

2)双线性
Φ1,Φ2,Φ33,a,b ∀ Φ 1 , Φ 2 , Φ 3 ∈ R 3 , a , b ∈ R ,有:

=(aΦ1+bΦ2)Φ3Φ3(aΦ1+bΦ2)=(aΦ1Φ3+bΦ2Φ3aΦ3Φ1bΦ3Φ2)=[a(Φ1Φ3Φ3Φ1)+b(Φ2Φ3Φ3Φ2)]=a[Φ1,Φ3]+b[Φ2,Φ3] = ( a Φ 1 + b Φ 2 ) Φ 3 − Φ 3 ( a Φ 1 + b Φ 2 ) ∨ = ( a Φ 1 Φ 3 + b Φ 2 Φ 3 − a Φ 3 Φ 1 − b Φ 3 Φ 2 ) ∨ = [ a ( Φ 1 Φ 3 − Φ 3 Φ 1 ) + b ( Φ 2 Φ 3 − Φ 3 Φ 2 ) ] ∨ = a [ Φ 1 , Φ 3 ] + b [ Φ 2 , Φ 3 ]

同理可证: [Φ3,aΦ1+bΦ2]=a[Φ3,Φ1]+b[Φ3,Φ2] [ Φ 3 , a Φ 1 + b Φ 2 ] = a [ Φ 3 , Φ 1 ] + b [ Φ 3 , Φ 2 ] .

3)自反性
Φ3 ∀ Φ ∈ R 3 ,

[Φ,Φ]=[ΦΦΦΦ]=0=0⃗  [ Φ , Φ ] = [ Φ Φ − Φ Φ ] ∨ = 0 ∨ = 0 →

4) 雅可比等价:代入展开即可证明。

通过以上4个定义的式子后即可得到结论。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值