证明:
每个
ϕ
ϕ
生成的反对称矩阵记为
Φ
Φ
:
根据此定义,两个向量的李括号表示为:
1)
封闭性
:
根据定义展开式子:
∀Φ1,Φ2∈ℝ3 ∀ Φ 1 , Φ 2 ∈ R 3 ,
记
ϕ11∗ϕ22−ϕ12∗ϕ21=ϕ¯3
ϕ
1
1
∗
ϕ
2
2
−
ϕ
2
1
∗
ϕ
1
2
=
ϕ
¯
3
,
ϕ13∗ϕ21−ϕ11∗ϕ23=ϕ¯2
ϕ
3
1
∗
ϕ
1
2
−
ϕ
1
1
∗
ϕ
3
2
=
ϕ
¯
2
,
ϕ12∗ϕ23−ϕ13∗ϕ22=ϕ¯1
ϕ
2
1
∗
ϕ
3
2
−
ϕ
3
1
∗
ϕ
2
2
=
ϕ
¯
1
则上式变为:
2)双线性
:
∀Φ1,Φ2,Φ3∈ℝ3,a,b∈ℝ
∀
Φ
1
,
Φ
2
,
Φ
3
∈
R
3
,
a
,
b
∈
R
,有:
同理可证: [Φ3,aΦ1+bΦ2]=a[Φ3,Φ1]+b[Φ3,Φ2] [ Φ 3 , a Φ 1 + b Φ 2 ] = a [ Φ 3 , Φ 1 ] + b [ Φ 3 , Φ 2 ] .
3)自反性
:
∀Φ∈ℝ3
∀
Φ
∈
R
3
,
4) 雅可比等价:代入展开即可证明。
通过以上4个定义的式子后即可得到结论。