MPC自行车模型

车辆横向模型预测控制的关键在于建立准确的车辆模型,特别是高速驾驶时。本文介绍了自行车运动学模型和动力学模型,前者忽略受力,仅考虑几何关系,后者则考虑车辆动态响应。模型用于预测车辆状态,对自动驾驶的稳定性和目标航向控制至关重要。
摘要由CSDN通过智能技术生成

对于车辆横向模型预测控制来说, 建立一个合适的车辆模型是非常重要的, 尤其对于高速情况下的自动驾驶, 如果我们不使用基于模型的控制(Model-free lateral Control)或者预测模型不够准确的话, 车辆对于目标航向角度会特别敏感, 车辆特别容易来回正弦抖动.

自行车运动学模型(Kinematic Bicycle Model)

运动学模型不考虑车辆的受力情况, 运动学模型只根据系统的几何关系. 并且我们假设轮胎没有滑移, 并且前轮和后轮的速度都位于车辆纵轴方向.
x ˙ = v cos ⁡ ( ψ + β ) y ˙ = v sin ⁡ ( ψ + β ) ψ ˙ = v cos ⁡ ( β ) l r + l f tan ⁡ ( δ f ) \dot{x}=v\cos(\psi + \beta) \\ \dot{y}=v\sin(\psi + \beta) \\ \dot{\psi} = \dfrac{v\cos(\beta)}{l_{r}+l_{f}}\tan(\delta_{f}) x˙=vcos(ψ+β)y˙=vsin(ψ+β)ψ˙=lr+lfvcos(β)tan(δf)
状态变量一共有三个 z = [ x , y , ψ ] T z=[x, y, \psi]^{T} z=[x,y,ψ]T, 输入变量为 u = [ v x , δ f ] u=[v_{x}, \delta_{f}] u=[vx,δf]
各个变量的说明如下

变量名称 含义
x inertial X coordinate of CoM
y inertial Y coordinate of CoM
ψ \psi ψ global heading angle
v x v_{x} vx longitudinal velocity of the vehicle at CoM
v y v_{y} vy lateral velocity of the vehicle at CoM
v v v velocity of the vehicle at CoM, v = v x 2 + v y 2 v=\sqrt{v_{x}^{2}+v_{y}^{2}} v=vx2+v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值