Python实现FA萤火虫优化算法优化支持向量机回归模型(SVR算法)项目实战

376 篇文章 275 订阅

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法寻找最优的参数值来优化支持向量机回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

 数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有10个变量,数据中无缺失值,共1000条数据。

关键代码:

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-200~200之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建FA萤火虫优化算法优化支持向量机回归模型

主要使用FA萤火虫优化算法优化SVR算法,用于目标回归。

6.1 算法介绍

     说明:FA算法介绍来源于网络,供参考,需要更多算法原理,请自行查找资料

(1)算法原理:

在FA中,萤火虫发出光亮的主要目的是作为一个信号系统,以吸引其他的萤火虫个体,其假设为:

1) 萤火虫不分性别,它将会被吸引到所有其他比它更亮的萤火虫那去;

2) 萤火虫的吸引力和亮度成正比,对于任何两只萤火虫,其中一只会向着比它更亮的另一只移动,然而,亮度是随着距离的增加而减少的;

3) 如果没有找到一个比给定的萤火虫更亮,它会随机移动 。

如上所述,萤火虫算法包含两个要素,即亮度和吸引度。亮度体现了萤火虫所处位置的优劣并决定其移动方向,吸引度决定了萤火虫移动的距离,通过亮度和吸引度的不断更新,从而实现目标优化。从数学角度对萤火虫算法的主要参数进行如下描述 :

(1)萤火虫的相对荧光亮度为: 

其中,I0 为萤火虫的最大萤光亮度,与目标函数值相关,目标函数值越优自身亮度越高;γ为光强吸收系数,荧光会随着距离的增加和传播媒介的吸收逐渐减弱; ri,j 为萤火虫i与j之间的空间距离 。

(2)萤火虫的吸引度为:

 其中,β0 为最大吸引度; γ为光强吸收系数; ri,j 为萤火虫i与j之间的空间距离。

(3)萤火虫i被吸引向萤火虫j移动的位置更新公式如式(3)所示:

其中,xixj 为萤火虫i和j所处的空间位置;α∈[0,1] 为步长因子;rand为[0,1]上服从均匀分布的随机数。

算法步骤如下

(1)初始化萤火虫算法参数。

(2)计算各萤火虫的亮度并排序得到亮度最大的萤火虫位置。

(3)判断迭代是否结束:判断是否达到最大迭代次数 T ,达到则转(4),否则转(5)。

(4)输出亮度最大的萤火虫位置及其亮度。

(5)更新萤火虫位置:根据式(3)更新萤火虫的位置,对处在最佳位置的萤火虫进行随机扰动,搜索次数增加1 ,转(2),进行下一次搜索。

6.2 FA萤火虫优化算法寻找最优参数值

关键代码: 

迭代过程数据(部分截图):

 最优参数:

6.3 最优参数值构建模型

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

从上表可以看出,R方1.0,为模型效果较好。

关键代码如下:

 7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。   

8.结论与展望

综上所述,本项目采用了FA萤火虫优化算法寻找支持向量机SVR算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

# 链接:https://pan.baidu.com/s/1WlG8DY6ZD8F_rPZwy1hGqA 
# 提取码:gl0k

# 用Pandas工具查看数据
print(df.head())

# 查看数据集摘要
print(df.info())

# 数据描述性统计分析
print(df.describe())

# y变量分布直方图
fig = plt.figure(figsize=(8, 5))  # 设置画布大小
plt.rcParams['font.sans-serif'] = 'SimHei'  # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
data_tmp = df['y']  # 过滤出y变量的样本
# 绘制直方图  bins:控制直方图中的区间个数 auto为自动填充个数  color:指定柱子的填充色
plt.hist(data_tmp, bins='auto', color='g')
plt.xlabel('y')
plt.ylabel('数量')
plt.title('y变量分布直方图')
plt.show()
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
粒子群算法(PSO)和支持向量回归机(SVR)都是常见的机器学习算法,可以用Python实现。 粒子群算法是一种优化算法,通过模拟鸟群等自然现象来寻找问题的最优解。它的核心原理是粒子根据自身经验和邻居经验来更新自身的位置和速度,以迭代的方式搜索最优解。在Python中,我们可以使用numpy或者其他优化库来实现PSO算法。 支持向量回归机是一种基于支持向量机的回归算法,它通过在特征空间中找到一个最优的超平面来进行回归预测。与普通的回归方法相比,SVR考虑到了数据的噪声和异常值,并使用支持向量机的核函数来对数据进行转换。在Python中,我们可以使用scikit-learn库来实现SVR算法。 以下是一个简单的Python代码示例,展示了如何使用numpy和scikit-learn实现PSO和SVR算法: ```python import numpy as np from sklearn.svm import SVR # 粒子群算法实现 def pso(): # 初始化粒子位置和速度 # 粒子的位置表示超参数,速度表示搜索方向和强度 # 粒子个体和全局最优位置需要根据问题来定义 # 粒子更新的逻辑也需要根据问题来定义 pass # 支持向量回归机实现 def svr(X, y): # 初始化SVR模型 svr_model = SVR() # 训练SVR模型 svr_model.fit(X, y) # 使用SVR模型进行预测 y_pred = svr_model.predict(X) return y_pred # 测试数据 X = np.array([[1, 2], [3, 4], [5, 6]]) y = np.array([1, 2, 3]) # 实现PSO算法 pso() # 实现SVR算法 y_pred = svr(X, y) print(y_pred) ``` 以上代码只是一个简单示例,实际的PSO和SVR算法需要根据具体问题进行适当的调整和优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖哥真不错

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值