目录
(点击可查看大图)
简述
国信证券
基于Carry的商品期货交易策略
发布日期:2022-05-25 关键词:Carry收益、吊灯止损
主要内容:文章从Carry收益的分解以及相关Carry收益的理论研究出发,构建了一个基础逻辑:当主力合约价格低于次主力合约,做多主力合约,反之,当主力合约价格高于次主力合约,此时应做空主力合约。
同时,根据Carry收益与策略夏普率之间的负相关性,进一步构建以Carry收益最低一组为多头组合,Carry收益最高一组为空头组合作为Carry基础策略,随后增加信号过滤和吊灯止损。最终形成了基于Carry的商品期货交易策略,策略费后年化收益率为25.96%,夏普率为1.73,Calmar为1.63。
国盛证券
ETF“交易型”、“配置型”投资者行为有何特征?
发布日期:2022-05-05 关键词:ETF、交易型、配置型
主要内容:采用滤波的方法将ETF规模划分为“交易型”和“配置型”两类。两类资金评价方式的主要结论如下:
1、“交易型”资金在主流宽基指数上都具有长期稳健的操作优势;
2、“交易型”资金在行业指数上擅长具有长逻辑的科技板块和交易逻辑相对固化的证券、军工等品种,不擅长周期、金融等无长逻辑、预期不断被突破的品种;
3、“配置型”资金在部分Smartbeta特别是红利类指数上容易做到“低买高卖”,但在消费、金融类指数上较难做到;
4、大部分ETF“配置型”资金倾向于“追跌杀涨”,但操作是否有效还依赖于其他因素。
国联证券
短债基金投资策略
发布日期:2022-05-27 关键词:短债基金、优选
主要内容:文章提供了一种短债基金优选方法:先排除,后优选。
排除的条件是成立时间短,规模过小,过去债券投资过程中出现债券标的严重违约的基金;再针对收益率、波动率和最大回撤进行优选。
最终根据基金历史的平均水平和经验来设定各个指标的门槛限制。最终选出了27只优秀的短债基金。包括财通资管鸿福短债A、华夏短债A、工银瑞欧短债A、银华信中尊短享期短金债A、汇添富短债融债等。
银河证券
转债在“固收+”产品中的重要作用
发布日期:2022-05-11 关键词:转债、固收
主要内容:文章尝试使用转债构建更适合“固收+”组合的投资方式。优先考虑组合的回撤,其后考虑收益要求,选择中等集中度持仓具有较强安全边际的转债,并以波动率筛选进攻性品种并以风险进行仓位控制。
“固收+”转债组合有效避免了市场在大幅波动时出现的大幅负收益和回撤,更好的利用了转债的非对称收益的特征,在市场上涨时也提供较高的参与度。长期夏普比率较高,且回撤控制较好。但并未对股票市场过度跟随,因此很难产生过高的收益。
华安证券
“量化绝对收益之路”系列之一:固收+组合构建白皮书:大时代的小尝试(上)
发布日期:2022-05-30 关键词:固收、红利、低波、稳健
主要内容:文章着眼于如何用量化方法搭建多种风险等级的固收+组合,给出一系列行之有效的解决方案。以权益仓位中枢对固收+产品的风险等级进行分类,分别对应稳健、均衡、进取和激进型产品。
稳健产品,以红利低波为基石,打造稳健型红利低波PLUS组合。权益方面,以红利+低波的因子组合为基石,通过引入负面清单机制、叠加价值和盈利维度增强组合收益,降低回撤。债券方面,以AAA高等级信用债、国债和国开债为配置品种,打造保守的债券组合;资产配置方面则通过风险预算+ERP择时增强策略收益,稳健型策略(RB+ERP)的年化收益为6.72%,夏普比为2.40,Calmar比为1.64,2018年和2022年(截至20220429)的收益分别为5.9%和-0.08%,防御性强。
华安证券
“量化绝对收益之路”系列之一:固收+组合构建白皮书:大时代的小尝试(中)
发布日期:2022-05-30 关键词:固收、均衡、进取
主要内容:均衡产品,以GARP投资构建均衡型组合,兼顾进攻性和防守性。权益方面,以GARP思想构建适应多变市场风格的股票组合。债券方面,在稳健型债券组合的基础上加入AA+信用债打造更为均衡的债券组合;基于风险预算+ERP的均衡型策略的年化收益为10.74%,夏普比为2.21,Calmar比为1.33,所有年份均能取得正收益,表现优异。
进取产品,打造进取型固收+:寻找成长行业中的业绩加速股。权益方面,基于企业生命周期理论和价值成长指标甄别成长行业,且通过业绩增长模式筛选出盈利加速增长的成长股。债券方面,在均衡型配置品种的基础上加入小比例仓位的可转债,增强债券组合收益;基于固定仓位+ERP择时的进取型策略的年化收益为14.44%,夏普比为1.61,Calmar比为0.85。
开源证券
市场微观结构研究系列(13):理想反转因子的4年总结:依旧理想
发布日期:2022-05-02 关键词:反转因子、微观结构
主要内容:文章在前期报告《A股反转之力的微观来源》构建的微观因子(理想反转因子)的基础上,分别从反转强度指标与取值方式两维度,构建理想反转因子的孪生因子。
反转强度指标分别选取:单笔成交额、单笔成交量以及二者的日变动量指标。取值方式分别选取:理想反转、加权平均、回归Beta以及Corr方式。通过反转强度指标与取值方式的不同组合,构建了基于同一逻辑下的16个孪生因子。
信达证券
因子选股系列之一:基于分钟线的高频选股因子
发布日期:2022-05-06 关键词:高频因子、成交量
主要内容:文章从高频分钟线数据入手,挖掘在日内具有高信息增益的因子,在不同的频率(30分钟,日度)上检测因子的预测效果。
从结果来看,改进后的高频因子有很强的收益预测效果。由于A股难以做空,通常会造成多头和空头力量的不匹配,从这个角度出发,可以对分钟收益进行一个划分,将分钟线收益分为大于0和小于0的情况分别测算,发现基于成交量改进后的因子在多头和空头两种情形下分别呈现了反转和动量两种情形。
在回测区间2013/01/01~2022/02/28内:
1、加上成交量和收益筛选后的改进正收益反转因子中性化后在日度频率上RankIC均值可达5.99%,ICIR为0.74。
2、加上成交量和收益筛选后的改进负收益动量因子中性化后在日度频率上RankIC均值可达4.60%,ICIR为0.62。加上成交量筛选后的改进波动率因子中性化后在日度频率上RankIC均值为6.52%,ICIR为0.70。
华泰证券
信贷-库存轮盘与资产配置
发布日期:2022-05-06 关键词:周期、四象限、资产配置、信贷、库存
主要内容:文章构建了信贷脉冲-库存周期轮盘。通过划分轮盘四象限,并统计各象限大类资产、行业板块、债券久期的长期表现,梳理出资产轮动规律,据此构建了双层次融合的资产配置策略。
与市面上已发布的信贷脉冲指数(如彭博-中国信贷脉冲指数)相比,华泰金工-信贷脉冲指数给予实体经济中长期融资需求更高关注;库存周期指数仿照信贷脉冲指数的形式构建,用于衡量实体经济产成品供求关系的相对变化。
设手续费双边千三,2010-12-31至2022-04-30,策略月换手率16.70%,年化收益6.07%,夏普比率1.80,最大回撤-4.36%,卡玛比率1.39,月度胜率75.00%。
方正证券
多因子选股系列研究之二:个股成交量的潮汐变化及“潮汐”因子构建
发布日期:2022-05-08 关键词:成交量、日内、潮汐
主要内容:文章以“潮汐”比喻日内股票成交量从低到高,再回归低成交量的过程,并以潮汐过程中股票价格快速变化带来的反转效果,构造“全潮汐因子”,随后对“涨潮”、“退潮”过程中量能的大小,进一步拆分“强势半潮汐”因子与“弱势半潮汐”因子,最终合成“完整潮汐”因子。
“完整潮汐”因子表现非常出色,Rank IC为-7.90%,Rank ICIR为-4.13,多空组合年化收益率达27.09%,信息比3.08,因子月度胜率83.96%。
国盛证券
捕获专业投资者市场行为中的alpha
发布日期:2022-05-09 关键词:专业投资者、事件驱动、alpha
主要内容:基金公司、北向资金等作为专业投资者,具备完善的投研体系和独特的信息获取优势,而一般法人作为企业经营的参与主体,掌握上市公司第一手的信息。文章尝试以事件驱动的角度,捕获专业投资者市场行为中蕴含的alpha。
浙商证券
误定价打分在行业轮动中应用
发布日期:2022-05-11 关键词:误定价、行业轮动
主要内容:文章基于前期研报《误定价打分、成交量,与A股预期收益率》、《误定价因子合成再探索》对个股进行误定价打分,再根据行业成分构成,合成表征行业误定价打分变量,并按照行业得分进行排序,以此在每月月末做多误定价打分最低的五个行业。
误定价打分组合的单调性可以迁移至中观行业层面进行利用。当行业间误定价打分区别显著时,其预期收益易见单调性,可以根据行业的误定价打分排序进行行业轮动。
中金公司
量化策略:形态量化系列(1):股票价格形态能否预测未来走势
发布日期:2022-05-17 关键词:形态、底背弛、中枢、顶背驰
主要内容:文章认为价格形态是过去一段时间股票供求关系的体现,而股票的供求关系又蕴含着市场对该股票未来边际变化的观点。为此该文将股票的K线形态抽象成笔结构,进而实现形态的数量化刻画,统计分析了不同市场环境、不同类型股票范围内的形态规律,供投资者参考。
浙商证券
一种自适应寻找市场Alpha的方法:“Trader-Company”集成算法交易策略
发布日期:2022-05-17 关键词:集成算法、自适应、Alpha
主要内容:文章将alpha数据的关注点聚焦在“信息的组合方式”上,而非聚焦在信息本身。通过简单的数学关系,挖掘出有效的关系组合表达以提升预测效果。在此基础上,采用类似遗传算法的方式,对因子进行迭代更新。
以沪深 300 为例,该策略自 2005 年初至今月均收益 2.4%,夏普比率 1.41。
中信证券
多因子量化选股系列专题研究:基于深度学习的因子优化研究
发布日期:2022-05-18 关键词:深度学习、因子、相关性
主要内容:文章认为深度学习的难点在于训练数据的信噪比过低,尤其是拟合目标——收益。金融信号的噪声主要存在于预测目标上,也就是Y。解决信号本身(X)噪声的主要方法是调整网络的结构,去学习信号中的不变性;而对于Y的噪声,应该从目标函数的设计入手。为此,文章将合成因子与收益率的相关性作为优化目标,采用深度网络实现学习,提出深度相关性模型。
深度相关性模型在回测区间实现了13.01%的年化超额收益,信息率2.57,超额最大回撤为5.02%。
东方证券
《量化策略研究之五》:DFQ工业类行业轮动策略:中观行业数据、分析师预期、业绩超预期、资金流向
发布日期:2022-05-19 关键词:行业轮动、DFQ
主要内容:文章以中观行业数据、分析师预期、业绩超预期、资金流向四个维度,构建DFQ工业类行业轮动体系。
文章总结认为DFQ工业类行业轮动策略基于证监会二级行业下的行业轮动策略效果最佳。2010年至今,合成因子叠加行业NTO5因子处于前 80%的top5行业组合,多头超额达到15.36%,信息比率1.49,超额收益最大回撤 24%。
西南证券
因子选股系列:基于相似股票历史收益的选股因子研究
发布日期:2022-05-20 关键词:相似、动量、预期差
主要内容:文章从股票价格、规模、风险、盈利能力、投资水平五个维度定义了股票距离,用来衡量股票与股票之间的相似程度,进而构建了相似股票动量因子,在我国A股市场对其进行了有效性检验。
相似动量因子同股票的下期收益正相关,相似股票动量因子IC均值为0.0305,IR为0.2689。
多空组合平均月收益率为1.01%,组合年化收益率为12.89%,最大回撤仅为8.39%。同时改进相似股票动量因子为相似预期差因子,其信息系数IC均值高达0.0910,多空组合平均月收益率为1.44%,组合年化收益率为18.72%,最大回撤仅为8.60%。
华西证券
基于筹码结构理论的行业轮动策略:取筹码厚积之处,享行业趋势行情
发布日期:2022-05-20 关键词:筹码结构、行业轮动、筹码收益率
主要内容:筹码结构的基本思想是用过去资产的量价信息去构建持有该资产的成本分布,从而衡量投资者在当前时刻的卖出意愿。文章通过固定累计换手率、不固定期限和固定期限、不固定累计换手率两种方法分别来测算筹码收益率因子以及筹码收益率历史百分位因子。
其中,固定期限的筹码收益率历史百分位因子的轮动组合累计收益为232.51%,相对于中证全指的累计超额为210.07%;同时累积筹码收益历史百分位因子的累计收益为242.61%,相对于中证全指的累计超额为220.17%。
财信证券
外生因子系列研究报告(二):三维情绪信号体系及策略构建
发布日期:2022-05-20 关键词:情绪、择时
主要内容:文章以情绪温度(主力资金在市场交易中的相对强弱)、情绪预期(沪深300股指期货升贴水率和上证50ETF期权成交额PCR倒数处理后取均值合成情绪预期指标)和情绪浓度(用主成分分析法衡量多资产间的相关性,选用行业细分程度更高的中信三级行业体系计算出情绪浓度指标)三个维度信号构建择时模型。
根据情绪浓度指标,今年1月份以来情绪浓度不断上升,延续2021年上半年以来长熊趋势,但截至 5 月 10 日尚未到达情绪浓度拐点的警戒线,即模型认为尚未出现熊转牛的拐点,持保守态度。
东方证券
因子选股系列之八十二:超大单冲击对大单因子的影响
发布日期:2022-05-23 关键词:大单因子、超大单
主要内容:文章基于前期《基于大单的alpha因子构建》研报构建的Level 2大单因子,进一步剔除超大单数据,从而构建大单买入占比和大单涨跌幅因子。
两类因子剔除超大单数据的影响后,在沪深300中选股效果差异不大,但是在中证500及其他样本空间中明显更强,其中剔除超大单后的大单买入占比在沪深300和中证全指中的RankIC分别为4.90%和8.58%。
光大证券
量化选股系列报告之五:高质量股票池构造体系
发布日期:2022-05-24 关键词:量化选股、股票池、优化
主要内容:文章针对股票池的构建问题提出了两层优化框架。第一层为刚性优化,目的是保证股票可交易,优化的目标包括风险警示股票(ST/*ST)、次新股、低流动性、极小市值以及净资产为负等;第二层为柔性优化,目的是提升股票池质量。
对列入基本面负面清单、量价因子空头组合、有可能财务造假以及发生过负面事件的股票进行剔除,据此构建了负向因子筛选流程,并且从多个财务分析维度筛选了 11 个负向因子并对负向因子的组合方式进行了较为全面的测试。发现对于合成方法来说,对空头单调的因子进行 ICIR 加权效果最好,对空头尾部有效的因子使用组合复合法效果最好。
对于剔除范围来说,对流动性 1500 中非指数成分股进行剔除效果最好。对于剔除阈值来说,选择剔除 4%-6%对策略提升最为明显。
德邦证券
金工机器学习专题之五:基于模型池的机器学习选股
发布日期:2022-05-24 关键词:机器学习、模型筛选、动态因子
主要内容:文章描述了一种基于动态因子、模型筛选的量化投资方法,采用LGBM模型进行拟合和预测,并且根据模型在训练集给出的特征重要性筛选因子,维护一个动态扩大的模型池,筛选近期表现良好的模型加以适用。
通过对比各参数发现模型对训练频率、验证集时间长度和模型种类的敏感性低;因子在全市场和市值偏小的股票池中表现良好。
安信证券
行业全视角雷达简介及应用
发布日期:2022-05-27 关键词:行业雷达、行业研究、行业全视角雷达
主要内容:文章结合前期研究成果以及行业估值、盈利预测一致预期等其他指标一起,构建了一个较为完整的行业比较框架--行业全视角雷达。该框架主要使用的指标有:趋势强度、位置优势、拥挤度、赚钱效应、北向资金、估值优势、盈利预测增速和盈利预测变化。
文章以案例分析的形式使用该模型,以房地产行业为例,当前所处的周期波动位置状态、估值状态和自身拥挤程度并没有明显的改善。唯一可能有所变化的是,房地产指数未来1 年的盈利增速预测的相对排名有了较为明显的提升。
光大证券
量化选股系列之六:高质量股票池构造体系Ⅱ:事件型风险研究
发布日期:2022-05-30 关键词:量化选股、股票池、负向事件、财务报表
主要内容:在前期《高质量股票池构造体系——量化选股系列报告之五》研报给出的股票池体系上,对负向事件进行了梳理研究,将其划分成可预测和不可预测两部分。
对于不可预测事件来说,若负向收益发生在事件发生后,可以通过及时监测并剔除涉事股票的方式避免损失扩大。
对于可预测负向事件,文章使用分箱法对财务指标和财务危机风险发生概率之间的关系进行刻画,引入IV(Information Value)和WOE(Weight of Evidence)指标对分箱效果进行评价。最终筛选出了45个有效财务指标对企业财务报告质量进行评分。
通过财务质量打分模型筛选出财务报表质量存疑的股票,剔除该类后的剩余股票相对于预警组合超额收益明显,沪深300股票池中年化超额收益12.50%,中证500股票池中年化超额收益13.62%。
方正证券
多因子选股系列研究之三:个股波动率的变动及“勇攀高峰”因子构建
发布日期:2022-05-30 关键词:收益波动比、波动率、收益率
主要内容:文章使用收益波动比指标来对收益率随波动率的变化程度加以衡量,构建了“勇攀高峰”因子,用来刻画那些波动异常高的同时也伴随着超高收益率的股票。
回测显示,“勇攀高峰”因子表现非常出色,Rank IC 为5.62%,Rank ICIR 为4.47,多空组合年化收益率达19.76%,信息比3.45,因子月度胜率83.02%。
声明:本内容由掘金量化整理,仅供学习、交流、演示之用,不构成任何投资建议!如需转载请联系掘金小Q(VX:myquant2018)授权,否则作侵权处理!