股票多因子模型之截面回归

本文介绍了时序回归与截面回归在股票多因子模型中的应用,以Fama三因子模型为例,阐述了如何进行时序回归计算个股因子暴露,然后通过截面回归计算因子收益率。提出了一种每月选取因子收益率最高的前N只股票构建投资组合的策略,并展示了2018年至2022年的回测结果,年化收益率52.51%,最大回撤33.56%,夏普比率为0.81。建议读者自行测试参数并构建自己的截面回归模型,以加深对多因子策略的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序回归和截面回归是股票多因子模型中常见的两种方法。经典的Fama三因子模型便是用了时序回归,掘金终端的示例策略中也有该模型的复现策略(多因子模型)


但时序回归中的因子对象必须是股票组合,只用到了一小部分股票的信息,而截面回归并不要求因子对象必须是股票组合,应用会更加广泛。

另外,二者最大的不同在于时序回归仅在时序上对标的进行一次回归,随后以在时序上取均值的形式来得到隐含的截面关系,该关系的确定不以最小化所有定价误差的平方和为目标,而截面回归是恰恰相反的。

故此,本文将以Fama三因子模型为基础,探究截面回归

        第一步:对任意股票在时间周期内,以Fama三因子(beta、账面市值比、市值)对标的日频收益率进行时序回归计算个股的因子暴露;

        第二步:计算时间周期内个股的平均收益,以因子暴露对平均收益进行截面回归计算因子收益率。

基于截面回归,我们可以设计一个简单的策略:

每月初计算Fama三因子(beta、账面市值比、市值),进行时序回归,计算因子暴露,再进行截面回归,计算因子收益率,取因子收益率最大的前N只股票构建投资组合。

进一步编写回测,相关参数如下:

  • 初始资金:100万

  • 回测品种:沪深300及其成分股

  • 回测区间:2018年01月01日-2022年07月24日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值