多因子组合优化:指数增强策略(附源码入口)

本文介绍了基于Fama三因子的指数增强策略,通过线性优化求解投资组合权重,控制因子暴露、行业偏离和跟踪误差。在约束条件下,策略实现了17.96%的年化收益率,最大回撤25.80%,夏普比率为0.63,超额收益23.78%。回测覆盖2019年至2022年,涉及沪深300成分股。代码已在掘金量化社区分享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多因子组合优化模型指数增强策略的核心是控制投资组合在更多的风险因子上的暴露与基准指数一致,以期获得更小的跟踪误差。因子暴露越大,对应的因子收益越高,风险越大。

 

所以,模型的优化目标是在给定风险约束下,最大化因子收益,即最大化因子暴露。

 

常见的风险控制包括风险暴露约束、行业暴露约束、相对于基准跟踪误差约束和个股权重约束等。

 

策略的组合优化模型形式如下:

  • 目标函数为最大化组合收益,其中ω为股票在组合中的权重向量,r为股票预期收益率;
  • 约束条件1控制组合相对于基准的因子暴露,其中X为股票在各个因子上的暴露矩阵,ωb为股票在基准指数上的权重,Sl和Sh为各因子的相对基准的暴露下限和上限;
  • 约束条件2控制组合相对于基准的行业偏离,H为股票的行业暴露矩阵,当股票i属于行业j时,Hji为1,否则为0,hl和hh分别为组合行业偏离的下限和上限;
  • 约束条件3控制个股相对基准成分股的偏离,ωl和ωh分别为个股偏离的下限和上限;
  • 约束条件4控制个股权重,ω大于等于0控制个股不能卖空,ω小于等于l控制个股权重上限;
  • 约束条件5要求各股票的权重和为1,即满仓运作。

 

线性优化的求解有多种模块可以实现,本文使用scipy.optimize.linprog()函数进行求解。求解过程中记得将目标函数转化为min()函数,约

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值