# -*- coding: utf-8 -*-
# 简便起见,可以直接用 from gm.api import *
from gm.api import run
from gm.api import ADJUST_PREV
from gm.api import MODE_BACKTEST
from gm.api import subscribe
from gm.api import history_n
from gm.api import order_percent
from gm.api import order_volume
from gm.api import (OrderSide_Buy, OrderSide_Sell)
from gm.api import (PositionEffect_Open, PositionEffect_Close)
from gm.api import OrderType_Market
from datetime import datetime
from datetime import timedelta
import talib
import numpy as np
from collections import deque
#本策略基于掘金量化交易平台 网址:www.myquant.cn
# 常用参量设置
DATE_STR = "%Y-%m-%d"
TIME_STR = "%Y-%m-%d %H:%M:%S"
HIST_WINDOW = 40
SHORT_PERIOD = 5
LONG_PERIOD = 20
def init(context):
# 全局变量设置
context.dict_stock_price = dict()
# 以 50 EFT作为交易标的
context.stock_pool = ['SHSE.600000']
# 订阅日线行情
subscribe(symbols=context.stock_pool, frequency='1d', wait_group=True)
# 日期设定,避免出现未来函数,将起始日往前取一日
start_date = datetime.strptime(context.backtest_start_time, TIME_STR)
context.start_date = datetime.strftime(start_date - timedelta(days=1),
TIME_STR)
# 获取起始日之前行情,便于计算指标
deque_close = deque(maxlen=HIST_WINDOW)
for stock in context.stock_pool:
history_info = history_n(symbol=stock,
frequency='1d',
count=HIST_WINDOW,
adjust=ADJUST_PREV,
adjust_end_time=context.backtest_end_time,
end_time=context.start_date,
fields='close')
for bar in history_info:
deque_close.append(bar['close'])
context.dict_stock_price.setdefault(stock, deque_close)
print('finish initialization')
def on_bar(context, bars):
for bar in bars:
if bar.symbol not in context.dict_stock_price.keys():
print('Warning: cannot obtain price of stock {} at date {}'.format(
bar.symbol, context.now))
# 数据填充
context.dict_stock_price[bar.symbol].append(bar.close)
# 计算指标,这里以双均线为例
closes = np.array(context.dict_stock_price[bar.symbol])
short_ma = talib.SMA(closes, SHORT_PERIOD)
long_ma = talib.SMA(closes, LONG_PERIOD)
macd, macd_signal, macd_hist = talib.MACD(closes,
fastperiod=12,
slowperiod=26,
signalperiod=9)
# 金叉,满仓买入
if short_ma[-2] <= long_ma[-2] and short_ma[-1] > long_ma[-1]:
order_percent(symbol=bar.symbol,
percent=1.0,
side=OrderSide_Buy,
order_type=OrderType_Market,
position_effect=PositionEffect_Open,
price=0)
print(context.now)
# 死叉或者 MACD 绿柱,全部卖出
pos = context.account().position(symbol=bar.symbol, side=OrderSide_Buy)
if (short_ma[-2] >= long_ma[-2] and short_ma[-1] < long_ma[-1]) or \
macd_hist[-1] < 0:
if pos is None:
continue
order_volume(symbol=bar.symbol,
volume=pos.volume,
side=OrderSide_Sell,
order_type=OrderType_Market,
position_effect=PositionEffect_Close,
price=0)
if __name__ == "__main__":
run(strategy_id='569b4ffc-6d44-11e8-bd88-80ce62334e41',
filename='demo_05.py',
mode=MODE_BACKTEST,
backtest_adjust=ADJUST_PREV,
token='64c33fc82f334e11e1138eefea8ffc241db4a2a0',
backtest_start_time='2017-01-17 09:00:00',
backtest_end_time='2018-06-21 15:00:00')
来源:掘金量化 myquant.cn
推荐阅读: | 量化交易 | 期货模拟交易 | python量化交易 | 股票数据 | 量化交易策略 | 机器学习算法 | 多因子选股 |
| 双均线策略 | 网格交易法 | 海龟交易法 | 跨期套利 | 行业轮动 | 指数增强 | 跨品种套利 | 日内交易 |