那些年薪60万起的PMO和项目经理掌握的硬技能

1704 篇文章 36 订阅
12 篇文章 0 订阅

在企业规模不断扩大和数字化风潮下,对研发效能提升的需求也越来越迫切,随便搜索一个招聘网站就可以看到,PMO和项目经理岗位招聘要求里面这一项都是必须项,面对这样的要求,你如果不懂效能,都不好意思去面试了。

那些年薪60万起的PMO和项目经理都必须掌握的硬技能

那些年薪60万起的PMO和项目经理都必须掌握的硬技能

前段时间,腾讯研究院的茹炳晟老师一篇《如何用研发效能搞垮一个团队》的帖子走红网络,被广泛阅读和转载,再一次引发大家对研发效能的关注。如今,一线大厂都在提效能,研发效能越来越受到重视。一夜之间,似乎只有推进了研发效能,才能让自己在和友商的比拼中不至于输在起跑线上。那么现在企业的研发效能实践到底为企业带来了多大的优势,又帮企业解决了哪些问题呢?那些推行研发效能的企业现在的状态怎么样?效能的本质是什么?效能度量的终极目标是什么?如何让“专家经验”产品化、标准化,从“事后复盘”发展为“风险管控”?我们又如何去打造适合自身企业生态的效能体系?

高管

趋势分析,业务价值交付,员工效率,企业文化,企业效率是不是多,快,好,省。

HR

人才分析,资源利用充分了?员工幸福感高了?人员性价比是否合理?人才发展建设提高了?

中层管理者

阶段分析,同比环比,流效率分析,管理流程和管理活动是否必须,管理活动的时间,管理活动的等待时间;

Devops

流负载分析、监控,网络安全,服务器状态,工作软件运行情况,健康状况分析;

那些年薪60万起的PMO和项目经理都必须掌握的硬技能

  • 研发效能到底要不要度量?

要。这个问题的答案不容质疑。

现代管理学之父 Peter Drucker 说过,“没有度量就没有改进”,没有可靠的度量就无法有效的改进,高度数字化的软件研发领域一直是进行各类效能度量尝试的创新重地。现代企业参与研发的人越多,人与人之间的沟通成本越高,产生随机偏差的概率也会越大,软件研发过程本身的可视化程度很低,风险就容易被各个环节掩盖,但它最终会在看不见的地方积累起来。如果没有适当的度量体系去显性化这些风险,结果可想而知,更不用谈什么持续改进和治理了。必须先掌握研发团队的效能情况并加以改进,才能推动团队做正确的事,更高效的产出。

  • 研发效能到底能不能度量?

谈到能不能度量就必须讲到几点研发效能度量容易走入的误区。

首先,度量不是免费的,投入的项目管理人员,产品经理,工程师,需遵循的流程规范,大量统计数据收集、分析和汇报都有成本。

其次,度量过程容易陷入局部思维,度量是一种协作性的数据管理方法“ 如果度量真的很重要,那是因为它必须对决策和行为产生一些可以想象的影响。”

最后,度量数据的解读具有很强的误导性,度量是为了发现问题,聚焦目标,不是为了考核。

  • 研发效能到底如何来度量?

研发效能度量价值观:不追求完美,迅速迭代,不要炫技要落地。

实现以上价值观的战略、方法:

1.要倾听管理者的度量诉求,但是不要照着做:从本质上去理解管理者想要看这些数据背后真正的动机,管理者通过这些数据到底是想解决什么样的问题。

2.度量应该是有层级结构的,高层管理者、中层管理者和一线工程师关心的度量维度肯定是不一样的。

3. 建立真正高效,恰到好处,解决问题的流程和必要的研发活动,定义统一的规范和标准推广落地

4.敏捷开发:思维敏捷,企业敏捷,业务敏捷,产品敏捷,研发敏捷,测试敏捷,流程敏捷。

5.建立效能平台:管理流程与工程实现联动,实现状态自动化流转/同步,统一工程效能平台固化流程与活动。

那些年薪60万起的PMO和项目经理都必须掌握的硬技能

  • 研发效能的度量指标如何来选取?

度量的设计目标是要能够引导出正确的行为

度量从来不是目的,而应该是实现目的的手段。不要在没有任何明确改进目标的前提下开展大规模的度量,比较理想的做法应该是通过对研发过程的深度洞察,发现有待改定的点,然后寻找能够证实自己观点的度量集合并采取相应的措施,最后再通过度量数据来证实措施的实际价值,这种“精准捕捞”的策略往往更具实用价值。

效能数据分析只是依托数据作为媒介,最终目标还是要诊断问题、给出建议。数据分为业务数据(做正确的事),交付数据(正确的做事),能力数据(更好的能力去正确的做事),效能体系将多个角色+研发洞察形成一套完整的生态系统,相互合作、相互驱动,最终,实现了自运营、自组织、自驱动的数据驱动提效模式。

那些年薪60万起的PMO和项目经理都必须掌握的硬技能

需要项目管理资料合集的同学可留言

那些年薪60万起的PMO和项目经理都必须掌握的硬技能

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值