region proposals 最初的每一个 initial regions 是如何生成的? Efficient Graph-Based Image Segmentation
- 最初最初的 initial regions 就是一个又一个的像素点。之后慢慢合并变大的。
1. 合并的特点:自适应或非局部准则
- 划分各个区域时,不同的地方使用不同的阈值,自适应的调整阈值,保证每一个地方都能被有效的划分。
- 因为合并是在比较区域内差异和区域间差异,这些值的大小是由每个区域内部点的属性决定的,不是设置的固定值,所以就具有了自适应的特点。
- 当这种自适应方法比较僵硬,所以结果不是特别理想。
2. 概念:将图的概念应用到 region 合并上
- G(V,E):G是由所有像素点组成的图,V是像素点,E是两个像素点之间的边(表示想像素点之间的差异)。
- C:被划分的 segmentation,一个 component 或 region。
2.1. 如何定义区域内差异,区域间差异
1. 区域内差异,即一个 component 或 region 的内部的差异 。( Int(C))
- 取区域内最大的那条边作为区域内差异。
- Int©的值是由边的极值来直接决定的,所以单个异常点的值将影响这个差异值,即对噪声敏感。这也是为什么作者会对图片做高斯模糊处理的原因。
- 只有一个点的区域内差异值是单独定义的。
2. 区域间差异,即两个 region 之间的差异。(Dif(C1,C2))
- 取两个区域间任意两个点之间最小边作为区域间差异。
- 如果两个区域之间没有边的话,定义差异为正无穷大。
3. 两个区域是否是 Pairwise Region 的判断条件。(D(C1,C2))
- Pairwise Region:成对区域,不能合并的区域,队里区域。
- D(C1,C2)= true,表示不能合并的情况。
- 能合并的条件是 otherwise,即两个区域的区域间差异要比任意一个的区域的区域内差异都要小。
- 合并的条件可以理解为,两个区域间的差异很小,比各自区域内的差异都小,就相当于区域间没有差异了,自然就可以直接将两个区域合并起来的。
- |C|:绝对值表示区域C中的像素点的数量。
- 最开始时,每一个 region 都是一个像素点,此时一个点的组内差异就是 k。k是一个参数数。
- k 越大,初始点的组内差异就越大,间接使得组间差异很小,即组间差异小于组内差异,更有利于开始的合并。k越大,越鼓励小像素点间的合并。
- 合并到后面之后,区域 region C中的像素点数量|C|变的越来越大,τ(C)=k/|C| 的值越接近于零,所以这一项只对最开始小像素的合并有关系,对之后大像素间的合并就没有什么影响了。
2.2. 像素点之间的差异是如何度量的?
- 单独的一个像素点只有一个性质,就是颜色。颜色相同就是没有差异,w=0。
- I(pi):表示一个像素点 i 的强度。如果是RGB图片,就计算像素点间的欧氏距离(将RGB三通道的值等效看成XYZ三个坐标的值)。
- 使用图片之前通常要对原始图片进行高斯模糊处理。sigm = 0.8 。
- 每一个像素点周围都有8个像素点,所有的像素点构成图概念中的点,所有的相邻像素点之间的差异构成图概念中的边。
3. 使用图概念来合并像素点的过程?
相关论文
- Efficient Graph-Based Image Segmentation
(完)