region proposals 最初的每一个 initial regions 是如何生成的? Efficient Graph-Based Image Segmentation


region proposals 最初的每一个 initial regions 是如何生成的? Efficient Graph-Based Image Segmentation

  • 最初最初的 initial regions 就是一个又一个的像素点。之后慢慢合并变大的。

1. 合并的特点:自适应或非局部准则

  • 划分各个区域时,不同的地方使用不同的阈值,自适应的调整阈值,保证每一个地方都能被有效的划分。
  • 因为合并是在比较区域内差异和区域间差异,这些值的大小是由每个区域内部点的属性决定的,不是设置的固定值,所以就具有了自适应的特点。
  • 当这种自适应方法比较僵硬,所以结果不是特别理想。
    在这里插入图片描述

2. 概念:将图的概念应用到 region 合并上

  • G(V,E):G是由所有像素点组成的图,V是像素点,E是两个像素点之间的边(表示想像素点之间的差异)。
  • C:被划分的 segmentation,一个 component 或 region。

2.1. 如何定义区域内差异,区域间差异

1. 区域内差异,即一个 component 或 region 的内部的差异 。( Int(C))
  • 取区域内最大的那条边作为区域内差异。
    在这里插入图片描述
  • Int©的值是由边的极值来直接决定的,所以单个异常点的值将影响这个差异值,即对噪声敏感。这也是为什么作者会对图片做高斯模糊处理的原因。
  • 只有一个点的区域内差异值是单独定义的。
2. 区域间差异,即两个 region 之间的差异。(Dif(C1,C2))
  • 取两个区域间任意两个点之间最小边作为区域间差异。
  • 如果两个区域之间没有边的话,定义差异为正无穷大。
    在这里插入图片描述
3. 两个区域是否是 Pairwise Region 的判断条件。(D(C1,C2))
  • Pairwise Region:成对区域,不能合并的区域,队里区域。
  • D(C1,C2)= true,表示不能合并的情况。
  • 能合并的条件是 otherwise,即两个区域的区域间差异要比任意一个的区域的区域内差异都要小。
  • 合并的条件可以理解为,两个区域间的差异很小,比各自区域内的差异都小,就相当于区域间没有差异了,自然就可以直接将两个区域合并起来的。
    在这里插入图片描述在这里插入图片描述
    在这里插入图片描述
  • |C|:绝对值表示区域C中的像素点的数量。
  • 最开始时,每一个 region 都是一个像素点,此时一个点的组内差异就是 k。k是一个参数数。
  • k 越大,初始点的组内差异就越大,间接使得组间差异很小,即组间差异小于组内差异,更有利于开始的合并。k越大,越鼓励小像素点间的合并。
  • 合并到后面之后,区域 region C中的像素点数量|C|变的越来越大,τ(C)=k/|C| 的值越接近于零,所以这一项只对最开始小像素的合并有关系,对之后大像素间的合并就没有什么影响了。

2.2. 像素点之间的差异是如何度量的?

在这里插入图片描述

  • 单独的一个像素点只有一个性质,就是颜色。颜色相同就是没有差异,w=0。
  • I(pi):表示一个像素点 i 的强度。如果是RGB图片,就计算像素点间的欧氏距离(将RGB三通道的值等效看成XYZ三个坐标的值)。
  • 使用图片之前通常要对原始图片进行高斯模糊处理。sigm = 0.8 。
  • 每一个像素点周围都有8个像素点,所有的像素点构成图概念中的点,所有的相邻像素点之间的差异构成图概念中的边。

3. 使用图概念来合并像素点的过程?

在这里插入图片描述

相关论文

  1. Efficient Graph-Based Image Segmentation
    (完)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值