跨模态图像翻译:使用具有感知监督的多生成网络合成MR脑图像的CT图像

文章介绍了一种使用多生成网络和感知监督的方法,将MRI图像转换为CT图像,以减少辐射暴露并提高诊断效率。通过结构感知损失和多层预训练模型,研究者提高了在结构不一致的MRI-CT数据上的转换性能,结果显示新方法在保持骨组织结构信息和模拟CT模态方面优于现有基线方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cross-modality image translation: CT image synthesis of MR brain images using multi generative network with perceptual supervision

跨模态图像翻译:使用具有感知监督的多生成网络合成MR脑图像的CT图像

Computer Methods and Programs in Biomedicine 237 (2023) 107571

背景

  • 背景:计算机断层扫描(CT)和磁共振成像(MRI)是临床上的主流成像技术。CT成像可以揭示高质量的解剖和病理生理结构,尤其是骨组织,用于临床诊断。MRI在软组织中提供高分辨率,并且对病变敏感。CT结合MRI诊断已成为常规的影像引导放射治疗方案。但是由于额外的CT检查会增加电离辐射,给患者带来风险。如果能够将磁共振图像转换为CT图像,则可以避免不必要的辐射,并且可以提高诊断价值。
  • 方法:在本文中,为了减少CT检查中的辐射暴露剂量,改善传统虚拟成像技术的局限性,我们提出了一种具有结构感知监督的生成MRI到CT的转换方法。即使结构重建在MRI-CT数据集配准中在结构上不对齐,我们提出的方法也可以更好地将合成CT(sCT)图像的结构信息与输入MRI图像对齐同时在MRI到CT的跨模态转换中模拟CT的模态
  • 结果:我们总共检索了3416张大脑MRI-CT配对图像作为训练/测试数据集,包括10名患者的1366张训练图像和15名患者的2050张测试图像。通过HU差异图、HU分布和各种相似性指标,包括平均绝对误差(MAE)、结构相似性指数(SSIM)、峰值信噪比(PSNR)和归一化互相关(NCC),对几种方法(基线方法和所提出的方法)进行了评估。在我们的定量实验结果中,所提出的方法在整个CT测试数据集中实现了最低的MAE平均值0.147,最高的PSNR平均值19.27和NCC平均值0.431。
  • 结论:总之,合成CT的定性和定量结果都验证了所提出的方法比基线方法能够保持更高的目标CT骨组织结构信息的相似性。此外,所提出的方法为模拟CT模态的分布提供了更好的HU强度重建。实验估计表明,该方法值得进一步研究。

贡献

我们提出了一个跨模态生成网络。为了平衡成对MRI和CT图像的结构对齐,我们在先前工作的基础上使用了结构感知损失重建方法[21]。Johnson等人的论文[22]通过计算特征提取器输出的感知损失,增强了对目标风格的监督。在CT重建任务中,我们采用了多层ImageNet预训练的ResNet-50的感知损失。我们的工作验证了所提出的方法可以在模态转换中保持MRI图像和CT图像之间的结构一致性。
CT-MRI变换中的结构对准结构对准是跨模态图像生成的关键因素,先前的研究表明,成对的CT-MRI图像中的逐像素结构错位会导致重建失败。为了应对CT-MRI配准中结构不相似的挑战,我们提出了一种新的训练方法,该方法能够从结构不一致的CT-MRI数据集进行重建,同时保留输入域的原始组织和结构信息。我们的方法为解决临床实践中CT-MRI配准结果中的像素错位提供了一种潜在的解决方案。
受CycleGAN和风格转移方法的启发,我们的工作提出了一个统一的三种损失(感知、CycleGAN和风格损失)目标函数,以解决跨域转换中内容重构的收敛问题。与普通的循环一致性损失相比,联合目标函数对内容重建的体素保持了更高的保真度。

[21] X. Gu, Z. Liu, J. Zhou, H. Luo, C. Che, Q. Yang, L. Liu, Y. Yang, X. Liu, H. Zheng, D. Liang, D. Luo, Z. Hu, Contrast-enhanced to noncontrast CT transformation via an adjacency content-transfer-based deep subtraction residual neural network, Phys. Med. Biol. 66 (14) (2021) 145017, doi:10.1088/1361-6560/ac0758.

实验

热图图评估了配对CT图像和合成CT图像之间的结构差异,热图是通过Hounsfield单位(HU)值的强度差异计算的。因此,我们使用核密度估计(KDE)曲线在CT头部测试图像的整个区域上分析了CT图像的HU分布。我们通过对标记线中像素位置对应的HU值进行采样来评估测试图像的HU轮廓。
数据集:私有CT、MRI数据集,25例,3416对,体素大小为0.5 mm×0.5 mm×1.0 mm,使用刚性配准算法对每个患者的CT和MR图像进行刚性对齐,并将它们重新采样到相同的体素大小和视野,以形成数据集。为了避免我们提出的模型中的过拟合和数据泄露,我们将数据集划分为来自10名患者的1366个CT/MR切片的训练集和来自15名患者的2050个CT/MR切片的测试集
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

方法

引入了一种感知提取方法,该方法在我们之前与CT重建相关的工作中提出[21]。在这项工作中,我们实现了一个预训练的具有冻结参数的ResNet-50作为损失网络
参考CycleGAN,我们提出的方法初始化用于MRI到CT转换CT到MRI转换的两个生成器。对应于MRI到CT发生器和CT到MRI发生器,该方法构造了两个鉴别器网络来识别真实目标的模拟。此外,我们的方法利用特征提取方法来保留结构未对准的输入到目标变换中的重要结构信息。为了捕捉特征图整个区域中目标特征的一致性,我们引入了一种感知提取方法,该方法在我们之前与CT重建相关的工作中提出[21]。在这项工作中,我们实现了一个预训练的具有冻结参数的ResNet-50作为损失网络。此外,我们使用鉴别器网络的主干来提取目标域中的身份特征。这两个特征提取器都有助于生成器网络的损失计算。图1显示了生成器网络的架构,包括上采样和下采样残差块的架构。
在这里插入图片描述
在这里插入图片描述

损失函数

为了解决未配对MRI-CT数据中MRI图像和CT图像的低结构一致性问题,我们提出的方法包括五个损失函数:风格传递损失、感知损失、循环损失、一致性损失和对抗性损失。

  • style loss 风格损失函数,使用gram矩阵的欧几里得距离作为ImageNet预训练的ResNet-50模型的输出层中的风格损失
    在这里插入图片描述
  • perceptual loss 感知损失是从没有梯度的预训练损失网络的第4层和判别损失网络的4层计算的
    在这里插入图片描述
  • 循环损失来控制输出映射循环到原始图像的重构
    在这里插入图片描述
  • 一致性损失是为了鼓励目标图像的映射,以保持从目标到输入的G投影中的像素一致性
    在这里插入图片描述
  • 与WGAN网络类似,我们将L1损失计算应用于MRI到CT发生器/鉴别器和CT到MRI发生器/鉴别器的对抗性损失,无需对数
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

Thinking

即使未配准的影像也能获取较好的效果

### CTMRI影像融合的技术概述 医学图像融合旨在通过结合来自不同成像模式的信息来提高诊断效果。对于CTMRI图像而言,每种成像方式都有其独特的优势[^3]。具体来说: - **CT** 提供了较高的空间分辨率以及良好的骨骼结构可视化能力; - **MRI** 则擅长展示软组织细节,在神经系统疾病检测方面尤为突出。 因此,将这两种类型的图像结合起来可以提供更全面的解剖信息支持临床决策过程。 ### 融合方法综述 为了有效整合上述两种模态的数据特点,已经开发出了种先进的算法和技术方案。以下是几种主要的方法及其工作原理: #### 1. 尺度分解法 这种方法通过对原始图像应用不同的滤波器组来进行层次分析,从而提取出各个频率范围内的特征成分。之后再按照一定规则组合这些分量得到最终的结果图像。此策略有助于保留源图片的关键属性而不失真变形[^1]。 ```python import pywt coeffs_ct = pywt.wavedec2(ct_image, 'haar') coeffs_mri = pywt.wavedec2(mri_image, 'haar') # 对应层次系数相加平均作为新系数 fused_coeffs = [(c1 + c2)/2 for c1,c2 in zip(coeffs_ct, coeffs_mri)] reconstructed_fusion_img = pywt.waverec2(fused_coeffs,'haar') ``` #### 2. 稀疏表达模型 利用字典学习框架下的稀疏编码机制,可以从大量样本中训练获得一组基向量用于表征目标对象的主要形态学特性;当应用于新的待处理案例时,则只需找到最能代表当前实例的一系列权重参数即可完成重建操作。然而需要注意的是,此类方法可能会造成边界区域过渡过于光滑的问题。 #### 3. 小波变换域内高低频分离重组 考虑到CTMRI各自侧重表现的不同物理性质(如前者偏向高频部分即边缘轮廓线等锐利变化处),可以通过小波变换先将其转换到相应的子带平面后再分别选取适合各自的重构要素加以拼接形成综合视图。 ```matlab [Ct_Low,Ct_High] = dwt2(double(I_CT),'db4'); [Mri_Low,Mri_High] = dwt2(double(I_MRI),'db4'); Fused_LL = (Ct_Low + Mri_Low) / 2; [Fused_LH,Fused_HL,Fused_HH] = deal(max(abs(Ct_High),abs(Mri_High))); I_FUSED = idwt2(Fused_LL,Fused_LH,Fused_HL,Fused_HH,'db4'); imshow(uint8(I_FUSED)); ``` #### 4. 基于PCA及其他统计特性的融合准则 采用主成分分析(Principal Component Analysis, PCA)或其他相似的概率分布度量手段评估两幅输入间的差异程度,并据此调整贡献比例以达到最佳视觉呈现效果。例如,可以根据像素级梯度强度或局部能量密度制定具体的映射关系式[^4]。 ```matlab function fusedImage = pcaBasedFusion(image1,image2) % ...省略预处理代码... [coeff,score,latent] = pca(cat(3,double(image1(:,:)),double(image2(:,:)))); reconstructedData = score * coeff'; fusedImage = reshape(reconstructedData(:,:,1)+reconstructedData(:,:,2),size(image1)); end ``` ### 结果验证与评价指标 在实际应用场景下,除了定性观察外还需要借助一系列量化标准来衡量所提方案的有效性和优越性。常用的性能评测维度包括但不限于均方误差(Mean Squared Error, MSE),峰值信噪比(Peak Signal-to-noise Ratio, PSNR),互信息(mutual information, MI)等等[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值