2020-6-16 吴恩达-改善深层NN-w3 多种可能分类Multi class classification(3.8 Softmax 回归--Softmax激活函数识别多种分类)

274 篇文章 24 订阅
233 篇文章 0 订阅

1.视频网站:mooc慕课https://mooc.study.163.com/university/deeplearning_ai#/c
2.详细笔记网站(中文):http://www.ai-start.com/dl2017/
3.github课件+作业+答案:https://github.com/stormstone/deeplearning.ai

3.8 Softmax 回归 Softmax regression

到目前为止,我们讲到过的分类的例子都使用了二分分类,这种分类只有两种可能的标记0或1。如果我们有多种可能的类型的话呢?有一种逻辑回归的一般形式,叫做Softmax回归,能让你在试图识别某一分类时做出预测,或者说是多种分类中的一个,不只是识别两个分类,我们来一起看一下。

在这里插入图片描述

观察上图。假设你不单需要识别猫,而是想识别猫,狗和小鸡。我把猫叫做类1,狗为类2,小鸡是类3,如果不属于以上任何一类,就分到“其它”或者说“以上均不符合”这一类,我把它叫做类0。

这里显示的图片及其对应的分类就是一个例子。左边第一幅图片上是一只小鸡,所以是类3,第二幅猫是类1,第三幅狗是类2,第四幅是一只考拉,所以以上均不符合,那就是类0,第五幅小鸡类3,以此类推。

我们将用符号 C C C表示你的输入会被分入的类别总个数。在这个例子中,我们有4种可能的类别,包括“其它”或“以上均不符合”这一类。当有4个分类时,指示类别的数字,就是从0到 C − 1 C-1 C1,换句话说就是0、1、2、3。

在这里插入图片描述

如上图。
在这个例子中,我们将建立一个NN,其输出层有4个,或者说 C C C个输出单元。因此, n n n,即输出层也就是 L L L 层的单元数量,等于4,或者一般而言等于 C C C
n [ L ] = C = 4 n^{[L]}=C=4 n[L]=C=4

我们想要输出层单元的数字告诉我们这4种类型中每个的概率有多大,所以

  • 输出层的第一个节点输出的应该是或者说我们希望它输出“其它”类的概率, P ( o t h e r ∣ x ) P(other|x) P(otherx)
  • 在输入 x x x的情况下,输出层第二个节点会输出猫的概率, P ( c a t ∣ x ) P(cat|x) P(catx)
  • 在输入 x x x的情况下,输出层第三个节点会输出狗的概率, P ( d o g ∣ x ) P(dog|x) P(dogx)
  • 在输入 x x x的情况下,输出层第四个节点会输出小鸡的概率,我把小鸡缩写为bc(baby chick), P ( b c ∣ x ) P(bc|x) P(bcx)

因此预测值 y ^ \hat y y^将是一个 4x1 维向量,因为它必须输出四个数字。而这四种概率,它们加起来应该等于1,即,输出层中的四个数字加起来应该等于1。

让你的网络做到这一点的标准模型要用到Softmax层,以及输出层来生成输出 y ^ \hat y y^

我们来观察一下公式。

在NN的最后一层,你将会像往常一样计算各层的线性部分。
z [ L ] z^{[L]} z[L]是最后一层的z变量, L L L是层数。 z [ L ] = W [ L ] a [ L − 1 ] + b [ L ] z^{[L]}=W^{[L]}a^{[L-1]}+b^{[L]} z[L]=W[L]a[L1]+b[L]
然后,我们需要应用Softmax激活函数。这个激活函数对于Softmax层而言有些不同,它的作用是这样的。

首先,我们要计算一个临时变量,我们把它叫做 t t t t = e z [ L ] t=e^{z^{[L]}} t=ez[L],这适用于每个元素。由于 z [ L ] z^{[L]} z[L]的维度是 4x1,所以 t t t的维度也是 4x1。

然后输出的 a [ L ] a^{[L]} a[L] a [ L ] = e z [ L ] ∑ i = 1 4 t i a^{[L]}=\frac{e^{z^{[L]}}}{\sum_{i=1}^4 t_i} a[L]=i=14tiez[L],分母是把向量 t t t归一化,和为1。 a [ L ] a^{[L]} a[L]也是 4x1 维向量。这个四维向量的第个元素 a i [ L ] = t i ∑ i = 1 4 t i a^{[L]}_i=\frac{t_i}{\sum_{i=1}^4 t_i} ai[L]=i=14titi

在这里插入图片描述

例,假设 z [ L ] = [ 5 2 − 1 3 ] z^{[L]}= \begin{bmatrix} 5 \\ 2 \\ -1 \\ 3 \\ \end{bmatrix} z[L]=5213,所以 t = [ e 5 e 2 e − 1 e 3 ] = [ 148.4 7.4 0.4 20.1 ] t=\begin{bmatrix} e^5 \\ e^2 \\ e^{-1} \\ e^3 \\ \end{bmatrix}=\begin{bmatrix} 148.4 \\ 7.4 \\ 0.4 \\ 20.1 \\ \end{bmatrix} t=e5e2e1e3=148.47.40.420.1,所以 a [ L ] = t 176.3 a^{[L]}=\frac{t}{176.3} a[L]=176.3t

此时,输出层第一个节点, a 1 [ L ] = 148.4 176.3 = 0.842 a^{[L]}_1=\frac{148.4}{176.3}=0.842 a1[L]=176.3148.4=0.842,即,类别0的概率是84.2%。
输出层第二个节点, a 1 [ L ] = 7.4 176.3 = 0.042 a^{[L]}_1=\frac{7.4}{176.3}=0.042 a1[L]=176.37.4=0.042,即,类别1的概率是4.2%。
输出层第三个节点, a 1 [ L ] = 0.4 176.3 = 0.002 a^{[L]}_1=\frac{0.4}{176.3}=0.002 a1[L]=176.30.4=0.002,即,类别2的概率是0.2%。
输出层第四个节点, a 1 [ L ] = 20.1 176.3 = 0.114 a^{[L]}_1=\frac{20.1}{176.3}=0.114 a1[L]=176.320.1=0.114,即,类别3的概率是11.4%。

最终,NN的输出 a [ L ] a^{[L]} a[L],也就是 y ^ \hat y y^,是一个4×1维向量, y ^ = [ 0.842 0.042 0.002 0.114 ] \hat y=\begin{bmatrix} 0.842 \\ 0.042 \\ 0.002 \\ 0.114 \\ \end{bmatrix} y^=0.8420.0420.0020.114,4个元素总和为1,也就是4个分类的概率之和为1。

我们总结一下从 z [ L ] z^{[L]} z[L] a [ L ] a^{[L]} a[L]的计算步骤,从计算幂到得出临时变量 t t t,再归一化,我们可以将此概括为一个Softmax激活函数。这一激活函数的与众不同之处在于,这个激活函数 需要输入一个4×1维向量,然后输出一个4×1维向量。

之前我们的激活函数都是接受单行数值输入,例如Sigmoid和ReLu激活函数,输入一个实数,输出一个实数。Softmax激活函数的特殊之处在于,因为需要将所有可能的输出归一化,就需要输入一个向量,最后输出一个向量

那么Softmax分类器还可以代表其它的什么东西么?

举几个例子,有两个输入 x 1 x_1 x1 x 2 x_2 x2,它们直接输入到Softmax层。Softmax层有三四个或者更多的输出节点,输出为 y ^ \hat y y^
在这里插入图片描述

观察上图。这是一个没有隐藏层的NN,它所做的就是计算 z [ 1 ] = W [ 1 ] x + b [ 1 ] z^{[1]}=W^{[1]}x+b^{[1]} z[1]=W[1]x+b[1],而输出的 a [ 1 ] a^{[1]} a[1],或者说 y ^ \hat y y^ a [ 1 ] = y ^ = g ( z [ 1 ] ) a^{[1]}=\hat y=g(z^{[1]}) a[1]=y^=g(z[1]),就是的Softmax激活函数。
在这里插入图片描述

上图中,原始输入只有 x 1 x_1 x1 x 2 x_2 x2,一个 C = 3 C=3 C=3个输出分类的Softmax层能够代表这种类型的决策边界。请注意图中的几条线性决策边界,这使得它能够将数据分到3个类别中。

在这张图中,我们所做的是选择这张图中显示的训练集,用数据的3种输出标签来训练Softmax分类器,图中的颜色显示了Softmax分类器的输出的阈值。输入的着色是基于三种输出中概率最高的那种。因此我们可以看到这是逻辑回归的一般形式,有类似线性的决策边界,但有超过两个分类,分类不只有0和1,而是可以是0,1或2。
在这里插入图片描述

再看上图,这是另2个Softmax分类器可以代表的决策边界的例子,用有三个分类的数据集来训练。直觉告诉我们,任何两个分类之间的决策边界都是线性的,这就是为什么你看到,比如右图中,黄色和红色分类之间的决策边界是线性边界,紫色和红色之间的也是线性边界,紫色和黄色之间的也是线性决策边界,但它能用这些不同的线性函数来把空间分成三类。
在这里插入图片描述

我们来看一下更多分类的例子。
上图中左图 C = 4 C=4 C=4,因此绿色分类和Softmax仍旧可以代表多种分类之间的这些类型的线性决策边界。中间图是 C = 5 C=5 C=5类。最后一个例子右图是 C = 6 C=6 C=6。这些例子显示了Softmax分类器在没有隐藏层的情况下能够做到的事情。
在这里插入图片描述

当然更深的NN会有输入 x x x,然后是一些隐藏单元,再到预测输出 y ^ \hat y y^等等,你就可以学习更复杂的非线性决策边界,来区分多种不同分类。

以上这些就是NN中的Softmax层或者Softmax激活函数的作用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值