官网 https://docs.opencv.org/3.4.1/de/dbc/tutorial_py_fourier_transform.html
傅里叶变换通常被用来分析各种滤波器的频率特性。
对于图像,2D离散傅里叶变换(DFT)被用于发现频域(frequency domain)。有一个计算DFT的快速算法叫快速傅里叶变换(FFT)。以上内容细节可以在任何一本图像处理或者信号处理的书中找到。
对于正弦信号
x(t)=Asin(2πft)x(t)=A sin(2πft)x(t)=Asin(2πft)
f是信号频率,如果把这个信号转到它的频域表示,我们可以在f中看到一个峰值。
如果对信号以离散形式采样,我们可以得到同样的频域(只不过是离散的),但是周期是 [−π,π] 或者 [0,2π] (N点DFT是 [0,N] )。
你可以把图像看成是沿着2个方向采样的信号。所以对图像同时进行X方向和Y方向的傅里叶变换,就可以得到图像的频率表示(频谱图)。
更直观一点说,对于正弦信号,如果它的幅度在短时间内变化很快,你可以说它是高频信号。如果变化很慢,那就是低频信号。你可以把同样的想法应用于图像。
那么图像中的振幅在哪里变化剧烈呢?在边界点或者噪音。
所以我们可以说边界和噪音是图像的高频部分。图像中振幅变化不大的部分,就是低频部分。

本文介绍了傅里叶变换在图像处理中的作用,特别是用于分析频率特性。通过numpy和opencv实现2D离散傅里叶变换(DFT),并展示了如何进行傅里叶变换、高通滤波以及低通滤波。傅里叶变换有助于识别图像中的高频(边界和噪声)和低频(平稳区域)部分,opencv的cv.dft()和cv.idft()函数提供了高效的运算实现。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



