EfficientDet: Scalable and Efficient Object Detection---论文阅读(1)

Google最新的目标检测方法,目前应该是最快最好的深度学习目标检测器,优于YOLOv3、Mask R-cnn,能实现高帧率,低FLOPS运算。本文对该论文整体进行大致的整理。

论文链接:arXiv:1911.09070v4
官方源代码地址:https://github.com/google/automl/tree/master/efficientdet.
非官方pytoch版本(运行速度更快):https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch

Abstract

模型效率在计算机视觉中的地位越来越重要。本文系统地研究了目标检测的神经网络体系结构设计选择,并提出了几种提高效率的关键优化方法。首先,我们提出了一种 加权双向特征金字塔网络(BiFPN) ,该网络允许简单快速的多尺度特征融合;其次,我们提出了一种复合尺度方法,该方法可以同时均匀地对所有骨干网、特征网络和box/类预测网络的分辨率、深度和宽度进行缩放。基于这些优化和EfficientNet主干网,我们开发了一个新的对象检测器家族EfficientDet,它在广泛的资源限制范围内始终比现有技术获得更好的效率。特别是,在单模型和单尺度的情况下,我们的EfficientDet7在COCO测试设备上实现了最先进的52.2 AP,具有52M参数和325B触发器1,比以前的检测器小4-9倍,使用的触发器比以前的检测器少13-42倍。

BiFPN

在这一部分中,我们首先阐述了多尺度特征融合问题,然后介绍了我们提出的BiFPN的主要思想: 有效的双向交叉尺度连接和加权特征融合。
1. 问题描述
图2(a)显示了传统的自上而下FPN[20]。它采用3-7级输入特征~P in=(Pin 3;::P in 7),其中Pin i表示分辨率为1=2i的输入图像的特征级别。例如,如果输入分辨率为640x640,则管脚3表示分辨率80x80的功能级别3(640=23=80),而管脚7表示分辨率为5x5的功能级别7。传统的FPN以自顶向下的方式聚合多尺度特征:
在这里插入图片描述
其中Resize通常是用于分辨率匹配的上采样或下采样操作,Conv通常是用于特征处理的卷积操作。
2. 交叉尺度连接 Cross-Scale Connections
传统的自顶向下FPN固有地受到单向信息流的限制。为了解决这个问题,PANet[23]添加了一个额外的自底向上的路径聚合网络,如图2(b)所示。交叉尺度连接在[17,15,39]中有进一步的研究。最近,NAS-FPN[8]采用神经架构搜索来搜索更好的跨尺度特征网络拓扑结构,但在搜索过程中需要数千GPU小时,发现的网络是不规则的,很难解释或修改,如图2(c)所示。
通过研究这三种网络的性能和效率(表5),我们发现PANet比FPN和NAS-FPN具有更好的精度,但需要花费更多的参数和计算。为了提高模型的效率,本文提出了几种跨尺度连接的优化方法:首先,我们移除那些只有一个输入边的节点。我们的直觉很简单:如果一个节点只有一个输入边而没有特征融合,那么它对以融合不同特征为目的的特征网络的贡献就较小。这导致了一个简化的双向网络;第二,如果原始输入节点与输出节点处于同一级别,我们会在它们之间添加额外的边,以便在不增加太多成本的情况下融合更多功能;第三,与PANet[23]不同,PANet[23]只有一个自顶向下和一个自下而上的路径,我们将每个双向(自上而下和自下而上)路径视为一个特征网络层,并多次重复同一层,以实现更高层次的特征融合。第4.2节将讨论如何使用复合缩放方法确定不同资源约束的层数。通过这些优化,我们将新的特征网络

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值