来源:整理 作者:学姐
编辑:学姐
三维点云配准是计算机视觉与模式识别中的一个重要问题,它已经被广泛地应用于三维重建、机器人定位与导航和无人驾驶等领域。
它的目的是求解两个点云之间的一种几何变换,通过几何变换实现两个点云在空间上的对齐。
最近,随着深度学习的进一步发展,3D计算机视觉成为了一个新兴的研究热点,而基于深度学习的配准算法研究也获得了较大的关注。
学姐整理了三维点云配准方向必读论文:
A comprehensive survey on point cloud registration.
配准是两个点云之间的变换估计问题,在众多计算机视觉应用中具有独特而关键的作用。基于优化的方法和深度学习方法的发展提高了配准的鲁棒性和效率。
最近,基于优化和深度学习方法的结合进一步提高了性能。然而,基于优化和深度学习方法之间的联系仍不清楚。此外,随着 3D 传感器和 3D 重建技术的最新发展,出现了一个新的研究方向来对齐跨源点云。
本次调查进行了全面的调查,包括同源和跨源注册方法,并总结了基于优化和深度学习方法之间的联系,以提供进一步的研究见解。该调查还建立了一个新的基准来评估解决跨源挑战的最先进的注册算法。此外,本次调查总结了基准数据集并讨论了跨各个领域的点云注册应用程序。
最后,这项调查提出了这个快速发展领域的潜在研究方向。
Generalized-ICP
在本文中,我们将迭代最近点 ('ICP') 和'点对平面 ICP' 算法组合到一个概率框架中。然后,我们使用该框架从两次扫描中对局部平面表面结构进行建模,而不是像通常使用点对面方法那样仅对“模型”扫描进行建模。这可以被认为是“平面到平面”。
新方法通过模拟和真实数据进行了测试,并证明其性能优于标准 ICP 和点对面。此外,新方法被证明对不正确的对应关系更稳健,因此更容易调整大多数 ICP 变体中存在的最大匹配距离参数。
除了已证明的性能改进之外,所提出的模型还允许将更具表现力的概率模型合并到 ICP 框架中。在保持 ICP 的速度和简单性的同时,Generalized-ICP 还可以允许添加离群项、测量噪声和其他概率技术以提高稳健性。
Point set registration:Coherent point drift.
点集配准是许多计算机视觉任务中的关键组成部分。点集配准的目标是分配两组点之间的对应关系,并恢复将一个点集映射到另一个点集的变换。多种因素,包括未知的非刚性空间变换、点集的大维数、噪声和异常值,使点集配准成为一个具有挑战性的问题。
我们介绍了一种概率方法,称为相干点漂移 (CPD) 算法,用于刚性和非刚性点集配准。
我们将两个点集的对齐视为概率密度估计问题。我们通过最大化似然将 GMM 质心(代表第一个点集)拟合到数据(第二个点集)。我们强制 GMM 质心作为一个整体连贯移动,以保持点集的拓扑结构。在刚性情况下,我们通过使用刚性参数对 GMM 质心位置进行重新参数化来施加相干约束,并推导出EM算法在任意维度上的最大化步骤的封闭形式解。
在非刚性情况下,我们通过调整位移场并使用变分法推导最佳变换来施加相干约束。我们还介绍了一种快速算法,可将方法计算复杂度降低到线性。我们在存在噪声、异常值和缺失点的情况下针对刚性和非刚性转换测试了CPD算法,其中CPD显示了准确的结果并且优于当前最先进的方法。
索引词——配准、对应、匹配、对齐、刚性、非刚性、点集、相干点漂移 (CPD)、高斯混合模型 (GMM)、相干性、正则化、EM算法。
Fast Global Registration.
我们提出了一种用于快速全局配准部分重叠 3D 表面的算法。该算法对覆盖表面的候选匹配进行操作。优化单个物镜以对齐表面并禁用错误匹配。目标在表面上密集定义,优化实现了紧密对齐,无需初始化。在内循环中不执行对应更新或最近点查询。该算法的扩展可以执行许多部分重叠表面的联合全局配准。广泛的实验表明,所提出的方法匹配或超过最先进的全球注册管道的准确性,同时至少快一个数量级。值得注意的是,所提出的方法也比 ICP 等局部优化算法更快。它提供了通过良好初始化的局部细化算法实现的精度,无需初始化且计算成本较低。
3DMatch:Learning local geometric descriptors from RGB-D reconstructions.
由于3D扫描数据的噪声、低分辨率和不完整特性,在真实世界的深度图像上匹配局部几何特征是一项具有挑战性的任务。这些困难限制了当前最先进方法的性能,这些方法通常基于几何属性的直方图。在本文中,我们介绍了3DMatch,这是一种数据驱动模型,它学习局部体积块描述符以建立部分3D数据之间的对应关系。
为了为我们的模型积累训练数据,我们提出了一种无监督的特征学习方法,该方法利用现有RGB-D重建中发现的数百万个对应标签。
实验表明,我们的描述符不仅能够匹配新场景中的局部几何以进行重建,而且还可以泛化到不同的任务和空间尺度(例如,Amazon Picking Challenge 的实例级对象模型对齐和网格表面对应)。
结果表明,3DMatch始终以显着优势优于其他最先进的方法。
Pointnet:Deeplearning on point sets for 3d classification and segmentation.
点云是一类重要的几何数据结构。
由于其格式不规则,大多数研究人员将此类数据转换为规则的 3D 体素网格或图像集合。然而,这会使数据不必要地庞大并导致问题。在本文中,我们设计了一种直接使用点云的新型神经网络,它很好地尊重了输入中点的排列不变性。我们的网络名为 PointNet,为从对象分类、部分分割到场景语义解析的应用程序提供统一的架构。虽然简单,但 PointNet 非常高效和有效
从经验上看,它表现出与现有技术相当甚至更好的强大性能。
从理论上讲,我们提供分析以了解网络学到了什么以及为什么网络在输入扰动和损坏方面是稳健的。
Fully convolutional geometric features.
从3D扫描或点云中提取几何特征是配准、重建和跟踪等应用的第一步.最先进的方法需要计算低级特征作为输入或提取具有有限接受域的基于补丁的特征。在这项工作中,我们提出了全卷积几何特征,由 3D 全卷积网络在单次传递中计算。
我们还提出了新的度量学习损失,可以显着提高性能。
全卷积几何特征紧凑,可捕获广泛的空间上下文,并可扩展到大场景。我们通过实验验证了我们在室内和室外数据集上的方法。
全卷积几何特征无需预处理即可达到最先进的精度,紧凑(32 维),并且比最准确的先验方法快 290 倍。
Deep Global Registration.
我们提出了 Deep Global Registration,这是一个用于真实世界3D扫描成对注册的可区分框架。
深度全局配准基于三个模块:用于对应置信度预测的 6 维卷积网络、用于封闭形式姿态估计的可微分加权 Procrustes 算法以及用于姿态细化的稳健的基于梯度的 SE(3) 优化器。
实验表明,我们的方法在真实世界数据上优于最先进的方法,包括基于学习的方法和经典方法。
论文原文pdf资料🚀🚀🚀
点击下方卡片关注《学姐带你玩AI》
回复“点云必读论文”领取
码字不易,欢迎大家点赞评论收藏!