多模态融合技术升级!新阶段2大融合模式取得最优性能

本文探讨了传统多模态融合方法的局限性,介绍了大模型技术推动下的新阶段融合模式,如多模态大模型架构和动态融合。重点介绍了两种热门模式的详细方法和代表性论文,以及28篇包含论文和代码的学习资源,为创新研究提供方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统的多模态融合方法面临着模态表示不一致、灵活性不足等问题,难以适应日益复杂的实际需求。

而随着大模型等新技术的发展,研究者将这些新技术与传统的多模态融合相结合,提出了新阶段的融合模式,包括多模态大模型时代的新架构、动态多模态融合等。这些新的融合模式和方法不仅提高了模型的性能,也为处理更复杂的现实问题提供了新的思路,是我们做创新发论文的好方向。

本文介绍6种传统模态融合方法,重点介绍2种热门的新阶段融合模式(多模态新架构+动态多模态融合),每种方法都附有代表论文以及相应代码(共28篇),方便同学们学习。

论文和代码需要的同学看文末

1.传统模态融合方法

①在将特征提取并转换到同一特征空间后,利用cross-attention等机制进行特征融合

  • 代表论文:DeepFusion:Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection

②在编码过程中逐步进行特征融合

  • 代表论文:CEKD:Cross-Modal Edge-Privileged Knowledge Distillation for Semantic Scene Understanding Using Only Thermal Images

③分别对不同模态的特征进行编码提取,然后融合特征图

  • 代表论文:Multi-exposure image fusion via deep perceptual

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值