在图像处理领域,Transformer能够有效应对点云数据的不规则性和无序性,并且通过自注意力机制,捕捉全局信息,从而更好地理解点云数据的整体结构和特征。因此,将Transformer应用于处理三维点云数据的任务已经成为了一种趋势。
对比稀疏卷积,点云Transformer拥有对非结构化数据的处理能力、较大的感受野、高效的设计和全局注意力机制。鉴于这些优势,研究者已经提出了多种基于Transformer的架构用于点云分类、分割、检测、跟踪、配准以及补全等任务。比如MIT&交大&清华联合提出的FlatFormer。
-
FlatFormer:一个非常高效的Transformer方法。比(基于Transformer的)SST快4.6倍,比(稀疏卷积的)CenterPoint快1.4倍。是第一个在边缘GPU上实现实时性能的点云Transformer。
本文分享12种点云Transformer创新方案,包含今年最新,原文以及开源代码已附,并简单提炼了方法和创新点,希望可以为同学们提供新的思路。
论文原文以及开源代码需要的同学看文末
FlatFormer
FlatFormer: Flattened Window Attention for Effcient Point Cloud Transformer
方法:FlatFormer采用了基于窗口的排序方法将点云扁平化,并将其分割成等大小的组,而不是等形状的窗口。然后,在每个组内应用自注意力机制提取局部特征