全面超越稀疏卷积!最新点云Transformer方法准确性实现SOTA,速度快4倍

本文探讨了Transformer在图像处理中如何有效处理点云数据的不规则性和无序性,特别是在点云分类、分割、检测等任务中的优势。重点介绍了FlatFormer、OctFormer和MGT等高效且创新的Transformer架构,以及它们在性能和效率上的提升。PointCT则展示了在弱监督下进行点云语义分割的新方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在图像处理领域,Transformer能够有效应对点云数据的不规则性和无序性,并且通过自注意力机制,捕捉全局信息,从而更好地理解点云数据的整体结构和特征。因此,将Transformer应用于处理三维点云数据的任务已经成为了一种趋势。

对比稀疏卷积,点云Transformer拥有对非结构化数据的处理能力、较大的感受野、高效的设计和全局注意力机制。鉴于这些优势,研究者已经提出了多种基于Transformer的架构用于点云分类、分割、检测、跟踪、配准以及补全等任务。比如MIT&交大&清华联合提出的FlatFormer。

  • FlatFormer:一个非常高效的Transformer方法。比(基于Transformer的)SST快4.6倍,比(稀疏卷积的)CenterPoint快1.4倍。是第一个在边缘GPU上实现实时性能的点云Transformer。

本文分享12种点云Transformer创新方案,包含今年最新,原文以及开源代码已附,并简单提炼了方法和创新点,希望可以为同学们提供新的思路。

论文原文以及开源代码需要的同学看文末

FlatFormer

FlatFormer: Flattened Window Attention for Effcient Point Cloud Transformer

方法:FlatFormer采用了基于窗口的排序方法将点云扁平化,并将其分割成等大小的组,而不是等形状的窗口。然后,在每个组内应用自注意力机制提取局部特征

### Transformer点云处理中的应用 #### 应用背景和发展趋势 近年来,Transformer架构因其强大的表达能力和全局依赖关系建模能力,在点云学习领域取得了显著进展[^2]。这些模型能够有效地捕捉点云内部复杂的几何结构和空间分布特性。 #### 主要应用场景 1. **点云分类** - 利用Transformer的强大表征能力来区分不同类型物体的点云数据。 - 多尺度几何感知变压器(Multi-Scale Geometric-Aware Transformer, MGT)通过划分不同数量和大小的patch获取多尺度特征,有助于提高分类准确性[^3]。 2. **点云分割** - 对于语义分割任务而言,Transformer能更好地理解局部细节以及整体上下文信息之间的关联。 - Point Cloud Transformer (PCT) 在此方面表现出色,不仅实现了最先进的效果,而且在网络规模与计算效率之间达到了良好平衡[^4]。 3. **点云生成** - 可以基于自回归机制或扩散过程构建生成对抗网络(GANs),借助Transformer编码器解码器框架完成高质量三维形状重建工作。 #### 实现方法概述 为了适应离散无序且不规则分布特点明显的点集形式输入,研究者们提出了多种创新性的解决方案: - 将原始坐标作为token直接送入标准Transformers; - 设计专门针对欧式距离度量体系优化过的注意力机制模块; - 引入额外位置编码辅助序列排列顺序的学习; 下面给出一段简单的Python伪代码展示如何初始化一个基本版Point Transformer类实例: ```python import torch.nn as nn class SimplePointTransformer(nn.Module): def __init__(self, embed_dim=64, num_heads=8): super(SimplePointTransformer, self).__init__() self.embed_layer = nn.Linear(3, embed_dim) # 坐标嵌入层 self.transformer_encoder = nn.TransformerEncoder( encoder_layer=nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads), num_layers=6) def forward(self, points): # 输入维度[B,N,3], B=batch size; N=point number embedded_points = self.embed_layer(points) output = self.transformer_encoder(embedded_points.permute(1,0,2)) return output.permute(1,0,2).mean(dim=1) # 平均池化得到全局描述符 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值