多模态CLIP魔改版太强了!直接上岸CVPR!

CLIP,一个由OpenAI开发的多模态预训练模型。近年来由于多模态的爆火,CLIP的研究热度也呈爆发式增长,CVPR 2024上只要是多模态方向的,几乎都在用CLIP。

CLIP被广泛应用于视觉理解、图像问答、机器人/具身智能等多个领域,这源于它卓越的视觉表征能力、良好的可扩展性,以及强大的跨模态连接文本与图像的能力。但显然,CLIP仍然有许多问题等待改进,比如处理细节和复杂关系的能力有限、对计算量的要求太高...

目前,我们对CLIP的改进创新基本围绕这些问题展开,且已经出现了不少值得学习的研究成果,比如ECCV 2024上的 AdaCLIP的框架,在零样本异常检测中实现了显著的性能提升!还有NeurIPS 2024的TripletCLIP、AAAI 2024的Structure-CLIP...

可见各大顶会上有关CLIP的改进研究真的是相当火热。本文整理了11个CLIP最新改进方案,全部都是顶会paper,基本都有代码,有论文需求的同学可以直接拿来作参考。

全部论文+开源代码需要的同学看文末

[ECCV2024] AdaCLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection

方法:论文提出了一个名为AdaCLIP的框架,它是对预训练的视觉-语言模型(VLM)CLIP的改进,用于零样本异常检测任务。AdaCLIP通过引入可学习的提示(prompts)来增强CLIP模型&

### 医学影像 CLIP 模型的改进方法 医学影像处理领域中的对比学习表示预训练(Contrastive Learning of Image Pre-training, CLIP)模型已经在多种任务上展示了大的性能。然而,在特定医疗场景下,为了提高其适用性和准确性,研究人员提出了若干针对性的改进措施。 #### 数据增策略优化 传统的数据增方式可能无法充分挖掘医学图像特有的结构特征。为此,有研究表明引入专门针对医学成像特点的数据扩增手段能够显著提升CLIP模型的表现[^1]。例如,采用随机裁剪、旋转以及仿射变换等方式来增加样本多样性的同时保持解剖位置的一致性。 #### 多模态信息融合 考虑到单一类型的医学影像是有限度地反映病灶情况的事实,结合其他形式的信息源成为一种有效的解决方案。文献指出利用多模态输入——如CT扫描与MRI图像相结合——可以让CLIP更好地捕捉病变区域的空间分布特性及其周围环境变化模式[^3]。这不仅有助于改善分类效果,还能够在一定程度上弥补单种成像技术固有的局限性。 #### 领域自适应迁移学习 由于公开可用的大规模高质量标注过的医学图片库相对稀缺,跨机构间存在较大差异等原因造成训练集偏差问题较为突出。因此,实施领域自适应算法使得经过一般自然场景下的大规模无标签数据预先训练好的CLIP权重参数更容易迁移到目标医疗子域内,并减少过拟合风险[^4]。具体做法包括但不限于微调最后一层全连接网络以适配新类别定义;应用对抗神经网络实现源域和目的域之间表征空间对齐等技巧。 ```python import torch.nn as nn class DomainAdaptationLayer(nn.Module): def __init__(self, input_dim=768, hidden_dim=256, output_dim=10): super(DomainAdaptationLayer, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.dropout(out) out = self.fc2(out) return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值