现有关于多模态融合的研究多集中在模型性能的提升上,对可解释的探索比较少。但实际上,可解释性是提升用户信任、优化模型决策的关键,具有重要的研究价值,符合当前学术界对透明AI的迫切需求。
因此,想要在多模态领域拥有成果,可解释的多模态融合是个很好的选择。中山六院团队的可解释多模态融合模型Brim,以及Nature子刊上的可解释纵向多模态融合模型,都是近期非常值得参考的研究,推荐感兴趣的论文er研读。
我另外还准备了12篇可解释多模态融合新成果(有代码),方便找idea的同学做参考。实在没思路的话,推荐考虑细分领域(如医疗)的实际需求,从模型架构(如动态注意力)、评估指标(如跨模态解释一致性)或者应用验证(如伦理审查)切入。
全部论文+开源代码需要的同学看文末
An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer
方法:论文提出了一种可解释的多模态融合模型(MRP),结合乳腺X光、MRI影像、病理信息和临床数据,通过跨模态学习和时间信息嵌入,预测乳腺癌患者对新辅助治疗的反应,性能优于传统方法和人类专家。
创新点:
-
通过引入跨模态知识预测器,模型性能在内部和外部数据集上的表现显著提高。
-
通过决策曲线分析方法,结合患者和临床医生的偏好,评估了MRP模型在不同决策阈值下的临床效用。
-
通过时间信息嵌入,模型在处理纵向数据时表现更为优异。
Interpretable Multimodal Fusion Model for Bridged Histology and Genomics Survival Prediction in Pan-Cancer
方法:论文开发了一个可解释的多模态融合模型(Brim),通过整合全切片图像(WSIs)和基因组分子特征,以预测癌症患者的预后,该模型通过Transformer多实例学习和自正则化网络提升预测准确性。
创新点:
-
Brim模型通过整合全切片图像(WSIs)和基因组分子特征,实现了泛癌患者的预后预测。
-
设计了桥接网络来学习配对的WSIs和基因组分子特征之间的关联,特别是在仅有WSIs的情况下预测缺失的分子信息。
-
使用了注意力和集成梯度归因分析等可解释性方法,分析了不同模型在泛癌预后预测中WSI补丁和基因组分子特征的贡献。
Explainable Multi-Modal Deep Learning With Cross-Modal Attention for Diagnosis of Dyssynergic Defecation Using Abdominal X-Ray Images and Symptom Questionnaire
方法:论文提出了一种可解释的多模态融合模型,结合腹部X光图像和症状问卷数据,通过跨模态注意力和卷积块注意力模块(CBAM)增强特征提取,并利用Grad-CAM和DeepSHAP技术解释模型决策,从而实现对出口梗阻性便秘(DD)的准确诊断。
创新点:
-
提出了一个解释性多模态深度学习模型,用于诊断排便障碍(DD)。
-
引入跨模态注意力机制(CMA)以增强多模态模型的性能,允许模型在不同模态之间选择性地聚焦和整合信息。
-
发明了掩蔽增强技术,以帮助模型忽略无关背景,更准确地聚焦于患者身体。
Crisiskan: Knowledge-infused and explainable multimodal attention network for crisis event classification
方法:论文提出了一种可解释的多模态融合模型(CrisisKAN),用于危机事件分类。该模型结合图像、文本和维基百科知识,通过引导式交叉注意力模块弥合图像与文本的语义差距,并利用Grad-CAM技术提供预测结果的可视化解释,从而在危机事件分类中实现更高的准确性和可解释性。
创新点:
-
提出了CrisisKAN,这是一种新颖的知识注入与解释性多模态注意力网络,用于分类危机事件。
-
引入了一种新的性能评估指标,称为多任务模型强度(MTMS)。
-
在模型中集成了一个解释性模块,结合使用了梯度加权类激活映射(Grad-CAM),以提供对模型预测的强大解释。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“可解释多模态”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏