CNN+Transformer,众所周知的热门组合。搜前沿的时候发现它在医学图像领域高质量成果不少。比如登上1区TOP刊的混合DL架构TBConvL-Net、CFFormer混合模型、医学图像分析模型Sdr-former...
原因在于这类混合架构可以更准确地识别和定位病变区域,提高诊断准确性,同时减少对标注数据的依赖,非常契合当下医学界的需求(比如计算资源有限的问题),研究前景广阔。
如果需要发论文,这方向是目前比较好的选择,搞创新的话可考虑轻量化+部署优化、无标注学习、因果推理与可解释性等角度,建议论文er从临床痛点反推模型设计,不要单纯堆叠模块。
本文整理了10篇CNN+Transformer+医学图像新论文,方便论文er找参考,基本都是开源的,大家有什么问题欢迎评论区友好交流~
全部论文+开源代码需要的同学看文末
TBConvL-Net: A hybrid deep learning architecture for robust medical image segmentation
方法:文提出了一种名为TBConvL-Net的混合深度学习架构,通过结合CNN的局部特征提取能力、双向卷积LSTM的时间依赖性建模能力以及ViT的长距离依赖性捕捉能力,实现了对医学图像分割的鲁棒性提升,并通过复合损失函数进一步优化分割效果。
创新点:
-
提出TBConvL-Net,融合CNN、BConvLSTM和Swin Transformer,兼顾局部特征与长距离依赖,提升医学图像分割效果。
-
设计复合损失函数,综合考虑分割鲁棒性和边界一致性,优化分割精度。
-
使用深度可分离卷积,降低计算负担,提高特征学习效率。
CFFormer: Cross CNN-Transformer Channel Attention and Spatial Feature Fusion for Improved Segmentation of Low Quality Medical Images
方法:本文提出了一种名为CFFormer的混合CNN-Transformer模型,用于改善低质量医学图像的分割效果。该模型通过引入交叉特征通道注意力模块和X空间特征融合模块,结合CNN的局部特征提取能力和Transformer的全局特征建模能力,有效提升了医学图像分割的性能。
创新点:
-
提出CFFormer模型,融合CNN和Transformer的双编码器架构。
-
引入交叉特征通道注意力模块,通过通道相关性过滤和交互特征,提升模型对通道特征的提取能力。
-
设计X空间特征融合模块,有效消除CNN和Transformer特征图在空间特征上的显著差异,增强空间特征融合能力。
SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion Classification Using 3D Multi-Phase Imaging
方法:论文提出了一种名为SDR-Former的新型框架,用于3D多相CT和MR影像中的肝脏病变分类。该框架结合了CNN和Transformer的优势,通过双分辨率处理和自适应相位选择模块,实现了高效且准确的多相医学图像特征提取和分类。
创新点:
-
提出SDR-Former框架,结合CNN和Transformer处理多相医学图像,提升特征提取能力。
-
引入BCIM和APSM模块,增强特征交互和动态调整相位影响,提高分类精度。
-
在多相CT和MR数据集上验证,性能优越,并公开新数据集支持研究。
ScribFormer: Transformer Makes CNN Work Better for Scribble-based Medical Image Segmentation
方法:论文提出了一种名为ScribFormer的方法,用于基于涂鸦(scribble)监督的医学图像分割,通过结合CNN和Transformer的优势,有效融合局部特征和全局上下文信息,显著提升了分割性能。
创新点:
-
提出ScribFormer模型,结合CNN和Transformer,融合局部特征和全局信息,提升分割性能。
-
引入ACAM分支,通过一致性损失优化特征学习,增强模型对目标区域的注意力。
-
在多个数据集上验证,性能优于现有方法,接近全监督学习效果。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“222”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏