当前国内AI大模型搞得如火如荼,今天给大家介绍一下国内AI大模型主流卡,以及对应的AI基础设施;
什么是GPU?
GPU,全称为图形处理器(Graphics Processing Unit),最初设计目的是加速计算机图形渲染,特别是在视频游戏和专业可视化应用中。然而,随着技术的发展,GPU因其独特的并行处理架构而成为高效数据处理的理想选择,不仅限于图形处理,还在高性能计算、大数据分析、以及人工智能等领域发挥了重要作用。
GPU和CPU的区别
-
设计架构:CPU设计为通用处理器,擅长执行各种复杂的逻辑操作和串行任务,拥有较少的核心数但每个核心的计算能力较强。而GPU专为大规模并行计算设计,拥有成百上千个小核心,适合处理大量相似且可以并行执行的简单任务。
-
数据处理方式:CPU遵循指令序列执行,每次执行一条指令,适合需要灵活逻辑判断的任务。GPU则采用SIMD(单指令多数据)架构,能在同一时间内对大量数据执行相同的操作,非常适合矩阵运算和向量运算,这些是AI计算中的常见任务。
-
内存和带宽:GPU通常配备更大带宽的内存(如GDDR显存),能够更快地读取和处理大量数据,这对于AI模型训练中频繁的内存访问至关重要。
<