Xilinx Platform Cable USB II 下载器驱动安装教程——Win10

一. Xilinx JTAG下载器

二. 问题描述

下载器连上电脑后,在设备管理中显示为 其它设备 -> 未知设备,或者是 Programming cables -> Xilinx Platform Cable USB II Firmware Loader,如下两图所示,这都表明下载器驱动没有正确安装。

此时在ISE iMPACT中 点击Initialize Chain,会有如下报错信息:

ISE iMPACT报错如下:

Connecting to cable (Parallel Port - LPT4).

Checking cable driver.

Driver windrvr6.sys version = 10.2.1.0. WinDriver v10.21 Jungo © 1997 - 2010 Build Date: Aug 31 2010 x86_64 64bit SYS 14:14:44, version = 1021.

Cable connection failed.

PROGRESS_END - End Operation.

Elapsed time = 4 sec.

Cable autodetection failed.

WARNING:iMPACT:923 - Can not find cable, check cable setup !

三. 驱动安装

在设备管理器中,按下列步骤完成驱动安装。

1.在Xilinx Platform…或是未知设备上右击,选择更新驱动程序。

2.浏览我的电脑以查找驱动程序

3.如果你安装了Vivado,那么可以在目录定位到

E:\Xilinx\Vivado\2020.2\data\xicom\cable_drivers\nt64\dlc10_win7

(注意nt64目录下还有个dlc10_win10文件夹,它在ISE中不起作用,不要选它,如果你不小心点成了dlc10_win10,你需要更新驱动成dlc10_win7,然后将下载器重新插拔一下)

再点击下一步。

如果没有驱动,可在本博文第四节 四. 驱动下载 中下载。

4.驱动安装完成

此时设备管理器中显示为Programming cables -> Xilinx USB Cable,说明驱动安装成功,下载器灯亮。

四. 驱动下载

Xilinx Platform Cable USB II Driver dlc10_win7.7z

链接:https://pan.baidu.com/s/1HHuzZcSBgyDsukbrq-Httw
提取码:z2jl

五. Win7、Linux等系统下的驱动安装

参考UG344 - USB Cable Installation Guide

https://china.xilinx.com/search/site-keyword-search.html#q=UG344


徐晓康的博客持续分享高质量硬件、FPGA与嵌入式知识,软件,工具等内容,欢迎大家关注。

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值