Ultra-Fast-Lane-Detection代码复现(车道线检测)

该博客介绍了UFLD(Ultra-Fast-Lane-Detection)算法,一种利用全局特征定位车道线的高效方法,通过减少局部像素处理,实现300+fps的速度。文章涉及行划分策略、结构化损失函数以及与VPGNet、SCNN和SAD等方法的比较。

Ultra-Fast-Lane-Detection

code: https://github.com/cfzd/Ultra-Fast-Lane-Detection
作者博客: https://zhuanlan.zhihu.com/p/157530787
参考博客: https://www.cnblogs.com/ziyuzhu-edward/p/13639494.html
在这里插入图片描述

  • our formulation is proposed to
    select locations of lanes at predefined rows of the image using global features
    instead of segmenting every pixel of lanes based on a local receptive field,
    which significantly reduces the computational cost.

  • we present a structural loss which explicitly
    utilizes prior information of lanes.

  • 准确率速度都很高,300+fps

相关工作

VPGNet, SCNN, Selfattention distillation (SAD)

Method
  • 将车道线检测定义为寻找车道线在图像中某些行的位置的集合,即基于行方向上的位置选择、分类(row-based classification)
  • 就是giridding一下变成大方块这样
  • 每一行是一个anchor
  • 我们可以发现向量的长度是w+1而不是w, 因为有可能这一行里所有的grid都不属于第i条车道, 这个时候需要多出一个grid来代表不存在, 此时向量前w个grid都是0, 第w+1个元素为1
    在这里插入图片描述
  • Lane structural loss
    在这里插入图片描述

环境准备

  1. Clone the project

    git clone https://github.com/cfzd/Ultra-Fast-Lane-Detection
    cd Ultra-Fast-Lane-Detection
    
  2. Create a conda virtual environment and activate it

    conda create -n lane-det python=3.7 -y
    conda activate lane-det
    
  3. Install dependencies

    # If you dont have pytorch
    conda install pytorch torchvision cudatoolkit=10.1 -c pytorch 
    
    pip install -r requirements.txt
    

数据集存放

$TUSIMPLEROOT
|──clips
|──label_data_0313.json
|──label_data_0531.json
|──label_data_0601.json
|──test_tasks_0627.json
|──test_label.json
|──readme.md

convert_tusimple

对于Tusimple,没有提供分割注释,因此我们需要从json注释生成分割。

python scripts/convert_tusimple.py --root /home/stone/disk/Lane_detection/Ultra-Fast-Lane-Detection-master/TuSimple

# this will generate segmentations and two list files: train_gt.txt and test.txt

测试

python test.py configs/tusimple.py --test_model ./tusimple_18.pth  --test_work_dir ./tmp

可视化

python demo.py configs/tusimple.py --test_model path_to_tusimple_18.pth

大部分图片的预测效果还可以,但是中间和右图的预测效果就特别差,感觉这两张图的车道特征还挺明显的,偏移比较大
在这里插入图片描述

训练

 python train.py configs/tusimple.py
<think>好的,我现在需要处理用户关于DSA-UFLD算法的查询。首先,用户提到了DSA-数据签名算法,并引用了站内的资料。根据用户提供的引用内容,里面主要讲的是DSS(数字签名标准)和DSA算法的历史背景,但用户实际询问的是DSA-UFLD,这可能是一个特定的变种或应用,比如在某个领域中的具体实现,比如UFLD可能代表某个框架、库或者应用场景的缩写。 首先,我需要确认DSA-UFLD是否是一个公认的术语。可能UFLD是某个领域的缩写,比如“Ultra-Fast Lightweight Device”或者其他专业术语。由于用户提供的引用中没有提到UFLD,可能需要进一步分析。考虑到DSA通常指数字签名算法,而UFLD可能是指某个具体项目、论文或者框架的名称,比如在联邦学习、物联网设备中的轻量级实现等。 接下来,我需要检查是否有相关的学术论文或技术文档提到DSA-UFLD。假设用户可能拼写有误,或者UFLD是某个特定上下文的缩写。例如,在联邦学习(Federated Learning)中可能有相关应用,或者是在无人机(UAV)、超快速设备中的实现。另外,UFLD也可能是某个研究项目的名称,需要进一步确认。 由于现有信息有限,用户提供的引用[1]主要关于DSA算法的历史和基本描述,没有涉及UFLD。因此,可能需要引导用户提供更多上下文,或者推测可能的解释。例如,DSA-UFLD可能是指DSA在超快速轻量级设备(Ultra-Fast Lightweight Devices)上的实现,或者是某个论文中提出的改进算法。 接下来,我需要回答用户的问题,即关于DSA-UFLD的资料和实现。由于信息不足,可能需要说明目前公开资料中DSA-UFLD的参考资料较少,建议用户检查术语的正确性,或者提供更多上下文。同时,可以介绍DSA的基本实现,并提及在轻量级设备上的优化方法,如减少计算量、使用预计算或硬件加速等,这些可能与UFLD相关。 此外,用户可能需要具体的代码示例或实现步骤。因此,可以提供一个基础的DSA实现示例,并讨论可能的优化方向,例如使用更高效的模幂运算、减少内存占用等,这些在资源受限的环境中尤为重要。 最后,生成相关问题,帮助用户进一步探索,比如询问应用场景、性能优化或与其他算法的比较等。</think>关于DSA-UFLD算法的技术资料和实现,目前公开领域的信息较为有限。根据现有资料推测,DSA-UFLD可能是数字签名算法(DSA)在特定领域(如轻量级设备或超快速场景)的优化变种,但目前未找到直接对应的标准算法定义[^1]。以下是已知关联信息和技术实现建议: --- ### 一、DSA算法基础实现 DSA标准算法包含以下核心步骤: 1. **密钥生成** $$ \begin{align*} p &: 1024\text{位素数} \\ q &: 160\text{位素数(且} q|(p-1)) \\ g &: g = h^{(p-1)/q} \mod p \quad (1 < h < p-1) \\ x &: 私钥(随机数,0 < x < q) \\ y &: 公钥,y = g^x \mod p \end{align*} $$ 2. **签名生成** $$ \begin{align*} k &: 随机数(0 < k < q) \\ r &= (g^k \mod p) \mod q \\ s &= k^{-1}(H(m) + xr) \mod q \end{align*} $$ 签名结果为$(r,s)$,其中$H(m)$是消息的哈希值。 3. **签名验证** $$ \begin{align*} w &= s^{-1} \mod q \\ u_1 &= H(m) \cdot w \mod q \\ u_2 &= r \cdot w \mod q \\ v &= (g^{u_1}y^{u_2} \mod p) \mod q \end{align*} $$ 若$v = r$则验证通过。 --- ### 二、DSA-UFLD的可能优化方向 若UFLD指代轻量级设备(Ultra-Fast Lightweight Device),其实现可能包含以下优化: 1. **预计算加速** - 预生成常用参数(如$g^k$的缓存) - 使用蒙哥马利约简优化模运算 2. **硬件加速** - 基于FPGA/ASIC的模幂运算单元 - 专用密码协处理器 3. **代码精简** ```python # 示例:Python简化版DSA签名(非生产环境) from Crypto.PublicKey import DSA from Crypto.Hash import SHA256 key = DSA.generate(1024) h = SHA256.new(b"message").digest() k = DSA.generate(1024).q # 实际应使用安全随机数 sig = key.sign(h, k) print("Signature (r, s):", sig) ``` --- ### 三、参考资料建议 1. **NIST FIPS 186-5标准**:DSA的最新规范文件 2. **轻量级密码学论文**:搜索关键词"Lightweight DSA implementation" 3. **硬件加速研究**:如《Efficient DSA Implementation on IoT Devices》 ---
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值