大家好,我是微学AI,今天给大家介绍一下机器学习实战8-基于XGBoost和LSTM的台风强度预测模型训练与应用,今年夏天已经来了,南方的夏天经常会有台风登陆,给人们生活带来巨大的影响,本文主要基于XGBoost模型和长短期记忆(LSTM)模型对台风强度进行了预测。通过具体的代码实台风强度的预测,具有较好的应用价值。
文章目录结构:
- 引言
- 台风强度预测模型项目介绍
- XGBoost原理
3.1 XGBoost算法简介
3.2 XGBoost的主要特点
3.3 XGBoost的优点和缺点 - LSTM原理
4.1 LSTM算法简介
4.2 LSTM的主要特点
4.3 LSTM的优点和缺点 - 台风强度预测数据样例
- 数据加载与预处理
6.1 数据加载
6.2 数据预处理 - XGBoost模型训练与预测
7.1 XGBoost模型训练
7.2 XGBoost模型预测 - LSTM模型训练与预测
8.1 LSTM模型训练
8.2 LSTM模型预测 - 模型评估与对比分析