点云从入门到精通技术详解100篇-基于深度学习的三维人脸表情识别(续)

本文详细探讨了基于深度学习的三维人脸表情识别技术,重点关注改进的Pointnet++网络在特征提取中的应用。通过点云数据的深度特征融合与Mesh_LBP特征相结合,提升了表情识别的准确性。实验分析表明,这种方法在Bosphorus和CASIA数据库上取得了87.96%和75.16%的平均识别准确率,验证了方法的有效性。
摘要由CSDN通过智能技术生成

目录

3.1.3 人脸表情敏感区域Mesh_LBP特征提取

3.2 三维人脸的点集深度特征

4 基于深度学习的三维人脸表情识别

4.1 基于改进的Pointnet++的人脸表情识别

4.1.1 主干网络

4.1.2 注意力模块

4.2 基于深度特征融合的网络结构

4.2.1 基于Mesh_LBP的深度神经网络

4.2.2 基于特征融合的网络

5 实验结果及分析

5.1 本文实验环境

5.2 实验数据库 

5.2.1 三维人脸表情模型的数据形式

5.2.2 人脸表情实验数据库

5.3 基于改进的Pointnet++的人脸表情识别实验 

5.3.1 表情数据增强

5.3.2 实验结果分析

5.4 基于深度特征融合的人脸表情识别实验


本文篇幅较长,分为上下两篇,上篇详见基于深度学习的三维人脸表情识别

3.1.3 人脸表情敏感区域Mesh_LBP特征提取


不同表情之间最为明显的差异主要是在人脸的眼部和嘴部表现出来。通过观察眼睛和 嘴巴的变化,我们可以较好的识别出不同的表情,例如快乐、悲伤、惊讶、愤怒等。因此, 这些特定的面部区域是表情识别中最为重要的因素,也是最能够体现出不同表情之间区别 的因素之一。本实验根据查找鼻尖点,根据“三庭五眼”的规律使用鼻尖点的y坐标对眼部 和嘴部进行剪切。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值