永磁直流电机数学模型公式推导

直流电机的数学模型可以通过电枢回路和机械运动的动态方程来描述。以下是详细的公式推导过程:


1. 电枢回路方程

根据基尔霍夫电压定律(KVL),电枢电压满足:
V = R a i a + L a d i a d t + E V = R_a i_a + L_a \frac{di_a}{dt} + E V=Raia+Ladtdia+E

  • V V V: 电源电压(V)
  • R a R_a Ra: 电枢电阻(Ω)
  • L a L_a La: 电枢电感(H)
  • i a i_a ia: 电枢电流(A)
  • E E E: 反电动势(V),与转速成正比:
    E = K e ω E = K_e \omega E=Keω
    • K e K_e Ke: 反电动势常数(V·s/rad)
    • ω \omega ω: 转子角速度(rad/s)

整理后电枢回路方程:
L a d i a d t + R a i a = V − K e ω L_a \frac{di_a}{dt} + R_a i_a = V - K_e \omega Ladtdia+Raia=VKeω


2. 机械运动方程(动力学方程)

根据牛顿第二定律(旋转运动),转矩平衡方程为:
T e = J d ω d t + B ω + T L T_e = J \frac{d\omega}{dt} + B \omega + T_L Te=Jdtdω+Bω+TL

### 永磁同步电机数学模型建立方法 #### 1. 坐标系的选择 在永磁同步电机(PMSM)应用中,通常选择d/q坐标系来构建数学模型。相较于α-β静止坐标系,在旋转的d-q坐标系下能够更有效地简化非线性方程组并消除交叉耦合项[^3]。 #### 2. α-β坐标系到d-q坐标系转换 通过Park变换可实现从三相静止abc坐标系至两相同步旋转变换后的d-q坐标系之间的过渡。此过程中涉及到的角度θ代表转子位置角,它决定了两个坐标系间的相对方位关系。具体而言: \[ \begin{bmatrix} i_d \\ i_q \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \times \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix} \] 其中\(i_\alpha\) 和 \(i_\beta\) 是由Clark变换获得的α-β坐标系下的电流分量;而\(i_d\)和\(i_q\)则是最终求得的d-q坐标系下的直流分量。 #### 3. 构建电压方程 一旦完成了上述坐标的转化工作,则可以根据电磁感应定律以及欧姆定理推导出适用于PMSM的电压平衡表达式: \[ v_d=R_s*i_d+\frac{\partial}{\partial t}\psi _d-L_{dq}*i_q*\omega_r*sin(δ) \] \[ v_q=R_s*i_q+\frac{\partial}{\partial t}\psi _q+L_{qd}*i_d*\omega_r*cos(δ)+ψ_f*\omega_r \] 这里,\(v_d,v_q\)分别表示d,q轴上的端口电压;\(R_s\)为绕组电阻; \(\psi_d ,\psi_q\)分别是d,q方向上产生的磁通链;\(ω_r\)指代机械角速度;\(δ\)是功率因数角。\(\psi_f\) 表示由于永久磁铁造成的恒定磁场强度[^2]。 #### 4. 转矩计算公式 基于以上所描述的状态变量,可以进一步得出电动机所产生的电磁力矩T_e 的解析形式如下所示: \[ T_e=\frac{3}{2p}(λ_f * i_q+(L_d - L_q)*i_d * i_q ) \] 这里的 p 表征极对数, λ_f 对应于每极面下固定不变的磁通密度幅值乘积结果。 ```matlab % MATLAB/Simulink 中 PMSM 控制器设计框架示意代码片段 function dxdt = fcn(t,x,u) % 定义参数 Rs = ... ; % 绕阻电阻 Ld = ... ; % 直轴自感系数 Lq = ... ; % 交轴自感系数 PsiF = ... ; % 励磁磁链 id=x(1); iq=x(2); % 计算电压反馈信号vd,iq vd=u(1)-Rs*id-(PsiF/Lq)*iq; vq=u(2)-Rs*iq+(Ld-Lq)/Lq*id*iq; % 更新状态向量dx/dt=[didt,didt]' Bmec=(3/2)*(PsiF*iq+(Ld-Lq)*id*iq); J=...;%转动惯量 phi=...;%摩擦系数 w=x(3); dw=Bmec/J-phi*w/J; dxdt=[vd/Ld-iq*(w/PsiF); ... (vq-PsiF*w-Rs*iq)/(Lq-id*Ld/Lq);... dw]; end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值