对YoloV5的backbone进行self-supervised learning以及fine-tuning

应用场景

当你的数据集存在标注数据占比较小,无标注数据占大头的时候,可以考虑下自监督学习来提高主干网络的视觉表征能力,有关自监督学习的论文可以参考这篇博文

分离出YoloV5的backbone

将YoloV5的backbone写成一个图像分类网络

class YoloBackbone(BaseModel):
    # YOLOv5 detection model
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=2, anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        self.model = self.model[:9]
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512, nc)

        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        x = self._forward_once(x, profile, visualize)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x  # single-scale inference, train

基于主干网络的自监督训练

这里的自监督学习来源于开源repo——lightly-ai。

# Note: The model and training settings do not follow the reference settings
# from the paper. The settings are chosen such that the example can easily be
# run on a small dataset with a single GPU.

import torch
from torch import nn
import torchvision.transforms.functional as F
from prefetch_generator import BackgroundGenerator
import tqdm
import copy
from copy import deepcopy

from lightly.data import LightlyDataset
from lightly.data import SimCLRCollateFunction
from lightly.loss import NegativeCosineSimilarity
from lightly.models.modules import BYOLProjectionHead, BYOLPredictionHead
from lightly.models.utils import deactivate_requires_grad
from lightly.models.utils import update_momentum


class BYOL(nn.Module):
    def __init__(self, backbone):
        super().__init__()

        self.backbone = backbone
        self.projection_head = BYOLProjectionHead(512, 1024, 512)
        self.prediction_head = BYOLPredictionHead(512, 1024, 512)

        self.backbone_momentum = deepcopy(self.backbone)
        self.projection_head_momentum = deepcopy(self.projection_head)

        deactivate_requires_grad(self.backbone_momentum)
        deactivate_requires_grad(self.projection_head_momentum)

    def forward(self, x):
        y = self.backbone(x).flatten(start_dim=1)
        z = self.projection_head(y)
        p = self.prediction_head(z)
        return p

    def forward_momentum(self, x):
        y = self.backbone_momentum(x).flatten(start_dim=1)
        z = self.projection_head_momentum(y)
        z = z.detach()
        return z


def normalize_tensor(tensor, mean, std, inplace=False):
    return F.normalize(tensor, mean, std, inplace)

if __name__ == "__main__":
    import torchvision.transforms as transforms
    import argparse
    from models.common import *
    from models.experimental import *
    from utils.autoanchor import check_anchor_order
    from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
    from utils.plots import feature_visualization
    from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
                                time_sync)
    from models.yolo import YoloBackbone

    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
    parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--profile', action='store_true', help='profile model speed')
    parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
    opt = parser.parse_args()
    opt.cfg = check_yaml(opt.cfg)  # check YAML
    print_args(vars(opt))

    # Create model
    yoloBackbone = YoloBackbone(opt.cfg)

    model = BYOL(yoloBackbone)
    gpus = [0, 1]
    # torch.cuda.set_device("cuda:{}".format(gpus[0]))
    device = "cuda" if torch.cuda.is_available() else "cpu"
    # model = nn.DataParallel(model, device_ids=gpus, output_device=gpus[0])
    model.to(device)
    # cifar10 = torchvision.datasets.CIFAR10("datasets/cifar10", download=True)
    # dataset = LightlyDataset.from_torch_dataset(cifar10)
    # or create a dataset from a folder containing images or videos:
    mean=[0.485, 0.456, 0.406]
    std=[0.229, 0.224, 0.225]
    dataset = LightlyDataset("/data/ssl")

    collate_fn = SimCLRCollateFunction(
    input_size=640,
    gaussian_blur=0.,
    )

    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=32,
        collate_fn=collate_fn,
        shuffle=True,
        drop_last=True,
        num_workers=0,
    )

    criterion = NegativeCosineSimilarity()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.06)

    print("Starting Training")
    best_avg_loss = 1000000
    for epoch in range(300):
        total_loss = 0
        for (x0, x1), _, _ in tqdm.tqdm(BackgroundGenerator(dataloader)):
            update_momentum(model.backbone, model.backbone_momentum, m=0.99)
            update_momentum(model.projection_head, model.projection_head_momentum, m=0.99)
            x0 = x0.to(device)
            x1 = x1.to(device)
            p0 = model(x0)
            z0 = model.forward_momentum(x0)
            p1 = model(x1)
            z1 = model.forward_momentum(x1)
            loss = 0.5 * (criterion(p0, z1) + criterion(p1, z0))
            total_loss += loss.detach()
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()
        avg_loss = total_loss / len(dataloader)
        print(f"epoch: {epoch:>02}, loss: {avg_loss:.5f}")

        if best_avg_loss > avg_loss:
            torch.save(model.backbone.state_dict(), "best_yolopBackbone.pth")
            print(f"Finding optimal model params. Loss is dropping from {best_avg_loss:.4f} to {avg_loss:.4f}")
            best_avg_loss = avg_loss

基于冻结主干梯度的模型预训练

在train.py中修改两处地方
修改模型加载方式,加载自监督学习后的主干参数

pretrained_dict = torch.load("SSL.pth")
model.load_state_dict(pretrained_dict, strict=False)

修改参数 freeze 设置为10
在这里插入图片描述

模型训练

修改参数 freeze 设置为0
在这里插入图片描述
在train.py中修改两处地方
修改模型加载方式,加载预训练后的模型参数

pretrained_dict = torch.load("xxx/runs/train/expxx/weights/best.pth")
model.load_state_dict(pretrained_dict, strict=False)
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值