机器人传感器网络的覆盖优化和空间负载均衡

\qquad 文中主要研究具有区域约束的机器人网络执行静态最优覆盖。给定密度函数描述事件发生的概率,执行函数( p e r f o r m a n c e   f u n c t i o n performance\ function performance function)代表到定位点的代价。目标是通过合理放置传感器使最小化探测代价。此外,由于平衡负载约束,预先设定给每个机器人的分配的区域。

一般性泰森分区(Generalized Voronoi Partitions)

\qquad 对于凸多边形 Q ⊂ R d Q\subset\mathbb{R}^d QRd P = ( p 1 , p 2 , . . . , p n ) ∈ Q n P=(p_{1},p_{2},...,p_{n})\in Q^{n} P=(p1,p2,...,pn)Qn,泰森分区为 V ( P ) = { V 1 ( P ) , . . . , V n ( P ) } \mathcal{V}(P)=\{V_{1}(P),...,V_{n}(P)\} V(P)={V1(P),...,Vn(P)},定义 D e l a u n a y   g r a p h \color{#F00}{Delaunay\ graph} Delaunay graph,对于相邻端点 p i 和 p j p_{i}和p_{j} pipj如果 V i ( P ) ∩ V j ( P ) ≠ ϕ V_{i}(P)\cap V_{j}(P)\neq\phi Vi(P)Vj(P)̸=ϕ,给定性能函数 f : R → R f:\mathbb{R}\rightarrow\mathbb{R} f:RR严格递增,给定权重 ω = ( ω 1 , . . . , ω n ) ∈ R n \omega=(\omega_{1},...,\omega_{n})\in\mathbb{R}^{n} ω=(ω1,...,ωn)Rn,得出一般性泰森分区公式为:
V i f ( P , ω ) = { q ∈ Q ∣ f ( ∣ ∣ q − p i ∣ ∣ ) − ω i ≥ f ( ∣ ∣ q − p j ∣ ∣ ) − ω j , i ≠ j } V_{i}^{f}(P,\omega)=\{q\in Q|f(||q-p_{i}||)-\omega_{i}\ge f(||q-p_{j}||)-\omega_{j},i\ne j\} Vif(P,ω)={qQf(qpi)ωif(qpj)ωj,i̸=j}一般的,一般化泰森分区既不是凸区域也不是星形

区域约束下的定位最优问题

\qquad 考虑区域约束条件多中心最优化问题,即在多中心最优问题( m i n i m i z e   H ( p 1 , . . . , p n , W 1 , . . . , W n ) minimize\ \mathcal{H}(p_{1},...,p_{n},W_{1},...,W_{n}) minimize H(p1,...,pn,W1,...,Wn))中增加可行域条件约束( a i a_{i} ai)。给定可行域集 { a 1 , . . . , a n } ⊂ R > 0 \{a_{1},...,a_{n}\}\subset\mathbb{R}_{>0} {a1,...,an}R>0满足 ∑ i = 1 n a i = ∫ Q ϕ ( q ) d q = a r e a ϕ ( Q ) \sum_{i=1}^{n}a_{i}=\int_{Q}\phi(q)dq=area_{\phi}(Q) i=1nai=Qϕ(q)dq=areaϕ(Q)。即:
m i n i m i z e H ( p 1 , . . . , p n , W 1 , . . . , W n ) s u b j e c t   t o ∫ W i ϕ ( q ) d q = a i , i ∈ { 1 , . . . , n } minimize\quad\mathcal{H}(p_{1},...,p_{n},W_{1},...,W_{n})\\ subject\ to\quad \int_{W_{i}}\phi(q)dq=a_{i},i\in\{1,...,n\} minimizeH(p1,...,pn,W1,...,Wn)subject toWiϕ(q)dq=ai,i{1,...,n}等分域情形为 a i = 1 / n ∫ Q ϕ ( q ) d q   f o r   i ∈ { 1 , . . . , n } a_{i}=1/n\int_{Q}\phi(q)dq\ for\ i\in\{1,...,n\} ai=1/nQϕ(q)dq for i{1,...,n}

基于一般化泰森分区的权重-区域映射

\qquad 定义权重-区域映射为 M : U ⊂ R n → R n \mathcal{M}:U\subset\mathbb{R}^{n}\rightarrow\mathbb{R}^{n} M:URnRn
M ( ω ) = ( ∫ V 1 f ( P , ω ) ϕ ( q ) d q , . . . , ∫ V n f ( P , ω ) ϕ ( q ) d q ) \mathcal{M}(\omega)=(\int_{V_{1}^{f}(P,\omega)}\phi(q)dq,...,\int_{V_{n}^{f}(P,\omega)}\phi(q)dq) M(ω)=(V1f(P,ω)ϕ(q)dq,...,Vnf(P,ω)ϕ(q)dq)其中, P = { p 1 , . . . , p n } P=\{p_{1},...,p_{n}\} P={p1,...,pn}。令 M \mathcal{M} M为梯度, ∇ F = − M \nabla F=-\mathcal{M} F=M( ? ? ? \color{#F00}{???} ),其中 F : R n → R F:\mathbb{R}^{n}\rightarrow\mathbb{R} F:RnR
F ( ω ) = ∑ j = 1 n ∫ V j f ( P , ω ) ( f ( ∣ ∣ q − p j ∣ ∣ ) − ω j ) ϕ ( q ) d q F(\omega)=\sum_{j=1}^{n}\int_{V_{j}^{f}(P,\omega)}(f(||q-p_{j}||)-\omega_{j})\phi(q)dq F(ω)=j=1nVjf(P,ω)(f(qpj)ωj)ϕ(q)dq \qquad 若通过配置权值 ω i \omega_{i} ωi使得 M ( ω i ) = a i \mathcal{M}(\omega_{i})=a_{i} M(ωi)=ai,几乎不能直接求解映射的解析解,使用的方法为:定义函数 g ( ω 1 , . . . , ω n ) = M ( ω 1 , . . . , ω n ) − ( a 1 , . . . , a n ) g(\omega_{1},...,\omega_{n})=\mathcal{M}(\omega_{1},...,\omega_{n})-(a_{1},...,a_{n}) g(ω1,...,ωn)=M(ω1,...,ωn)(a1,...,an),其原函数为: F : R n → R n , F = − F ( ω ) − ∑ i = 1 n ω i a i \mathcal{F}:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n},\mathcal{F}=-F(\omega)-\sum_{i=1}^{n}\omega_{i}a_{i} F:RnRn,F=F(ω)i=1nωiai。寻找 ω ∈ U \omega\in U ωU,使得:
∇ F ( ω ) = g ( ω ) = 0 ( v e c t o r ) n \nabla\mathcal{F}(\omega)=g(\omega)=0(vector)_{n} F(ω)=g(ω)=0(vector)n \qquad 所寻找的 ω \omega ω即优化函数 F \mathcal{F} F(多中心最优化问题 ? ? ? \color{#F00}{???} )又使得泰森区域满足约束条件。 使 用 雅 克 比 ( J a c o b i ) 迭 代 算 法 配 置 权 重 。 \color{#F00}{使用雅克比(Jacobi)迭代算法配置权重。} 使(Jacobi)
\qquad 雅克比算法(生成线性方程的 J O R JOR JOR算法)
x ( t + 1 ) = x ( t ) − γ [ D ( x ( t ) ) ] − 1 ∇ F ( x ( t ) ) x(t+1)=x(t)-\gamma[D(x(t))]^{-1}\nabla F(x(t)) x(t+1)=x(t)γ[D(x(t))]1F(x(t)) \qquad 其中, γ \gamma γ是步长, D ( x ) D(x) D(x)是对角矩阵,其第i个对角元素为 ∇ i i 2 F ( x ) \nabla_{ii}^{2}F(x) ii2F(x),假设其对角元素都是非零元素。
\qquad 应用雅克比算法迭代权值为:
ω k + 1 = ω k − γ d i a g ( ∂ g 1 ∂ ω 1 ( ω k ) , . . . , ∂ g n ∂ ω n ( ω k ) ) − 1 g ( ω k ) \omega_{k+1}=\omega_{k}-\gamma diag(\frac{\partial g_{1}}{\partial \omega_{1}}(\omega_{k}),...,\frac{\partial g_{n}}{\partial \omega_{n}}(\omega_{k}))^{-1}g(\omega_{k}) ωk+1=ωkγdiag(ω1g1(ωk),...,ωngn(ωk))1g(ωk) \qquad 使 用 质 量 守 恒 ( c o n s e r v a t i o n − o f − m a s s ) 定 理 \color{#F00}{使用质量守恒(conservation-of-mass)定理} 使(conservationofmass)求解:
∂ g i ∂ ω j = ∫ ∂ V i ϕ   n i ∂ q ∂ ω j d q \frac{\partial g_{i}}{\partial \omega_{j}}=\int_{\partial V_{i}}\phi\ n_{i}\frac{\partial q}{\partial\omega_{j}}dq ωjgi=Viϕ niωjqdq

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值