【Transformer】CLS(classification)有什么用?

[CLS]标记在BERT模型中扮演关键角色,它用于捕捉整个文本的语义特征,适用于单文本分类和语句对分类任务。在单文本分类中,[CLS]向量作为文本的表示进行分类;在语句对分类如问答匹配、语句匹配中,[CLS]结合[SEP]区分不同句子,帮助判断它们的关系。这一概念对于理解和应用预训练语言模型至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CLS]就是classification的意思,可以理解为用于下游的分类任务。

一句话理解:【CLS】就是一个向量,只是不是某一个字的向量,是一个够代表整个文本的的语义特征向量,取出来就可以直接用于分类了。

意思就是它是代表整个语句的标签,代表该语句是什么含义(褒贬义/正确错误....)而不是仅仅代表一个单词的含义

主要用于以下两种任务:

单文本分类任务:对于文本分类任务,BERT模型在文本前插入一个[CLS]符号,并将该符号对应的输出向量作为整篇文本的语义表示,用于文本分类,如下图所示。可以理解为:与文本中已有的其它字/词相比,这个无明显语义信息的符号会更“公平”地融合文本中各个字/词的语义信息。

语句对分类任务:该任务的实际应用场景包括:问答(判断一个问题与一个答案是否匹配)、语句匹配(两句话是否表达同一个意思)等。对于该任务,BERT模型除了添加[CLS]符号并将对应的输出作为文本的语义表示,还对输入的两句话用一个[SEP]符号作分割,并分别对两句话附加两个不同的文本向量以作区分,如下图所示。

 

BERT的[CLS]有什么用_Mr_不想起床的博客-CSDN博客

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值