计算机控制系统信号恢复之零阶保持器

零阶保持器

在计算机控制系统中,由于CPU只能处理数字信号,而被控对象等过程往往是连续过程,因此计算机控制系统是一个混合系统,包含数字信号、模拟信号、离散模拟信号。而在数字信号通过DA转换为模拟信号的时候,样本点之间需要做连续处理,也就是保持器,保持器有很多种,根据其取Taylor展开的项数确定其为哪阶保持器。如果只取第一项就是零阶保持器。

零阶保持器传递函数推导

对零阶保持器的推导往往采用单位冲激响应,在0时刻给予输入 δ ( t ) \delta(t) δ(t) ,则输出为:
在这里插入图片描述
我们将这个输出分解为两个信号:
在这里插入图片描述
g ( t ) = 1 ( t ) − 1 ( t − T ) g(t)=1(t)-1(t-T) g(t)=1(t)1(tT) 之后对其进行拉氏变换: L ( g ( t ) ) = 1 s − e − s T s = 1 − e − s T s L(g(t))=\frac{1}{s}-\frac{e^{-sT}}{s}=\frac{1-e^{-sT}}{s} L(g(t))=s1sesT=s1esT
由于: L ( δ ( t ) = 1 L(\delta(t)=1 L(δ(t)=1
因此零阶保持器的传递函数就是 L ( g ( t ) ) L(g(t)) L(g(t))

零阶保持器的频率响应

L ( g ( t ) ) L(g(t)) L(g(t)) 中的 s s s 替换为 j w jw jw 即可。于是得到:
W h 0 ( j w ) = T s i n ( w T / 2 ) w T / 2 e − j w T 2 W_{h0}(jw)=T\frac{sin(wT/2)}{wT/2}e^{-j\frac{wT}{2}} Wh0(jw)=TwT/2sin(wT/2)ej2wT
观察这个式子我们发现当 w w w 每到 k w S kw_S kwS 的时候幅度就会发生正负跳变( T = 2 π / w S T=2\pi/w_S T=2π/wS),但与此同时后面的指数项角度也越过 − π -\pi π线,因此,我们将其表为如下式子:
W h 0 ( j w ) = T ∣ s i n ( w T / 2 ) w T / 2 ∣ e j ( − w T / 2 + k π ) W_{h0}(jw)=T|\frac{sin(wT/2)}{wT/2}|e^{j(-wT/2+k\pi)} Wh0(jw)=TwT/2sin(wT/2)ej(wT/2+kπ)
k = I N T ( w / w S ) k=INT(w/w_S) k=INT(w/wS)
绘制图像如图:
在这里插入图片描述
在这里插入图片描述
我们可以看到零阶保持器的相频特性呈锯齿状,我们也叫零阶保持器的开关特性,另外,零阶保持器有许多小旁瓣,但整体呈低通滤波特性。

零阶保持器的滞后特性

零阶保持器平均滞后 T / 2 T/2 T/2 。推导如下:
W h 0 ( s ) = e T s / 2 − e − T s / 2 s e T s / 2 = ( 1 + T s / 2 + . . . ) − ( 1 − T s / 2 + . . . ) s e T s / 2 ≈ T e − T s / 2 W_{h0}(s)=\frac{e^{Ts/2}-e^{-Ts/2}}{se^{Ts/2}}=\frac{(1+Ts/2+...)-(1-Ts/2+...)}{se^{Ts/2}}\approx Te^{-Ts/2} Wh0(s)=seTs/2eTs/2eTs/2=seTs/2(1+Ts/2+...)(1Ts/2+...)TeTs/2

总结

零阶保持器无论在计算机控制系统亦或是数字信号处理中都是一个至关重要的角色,深刻理解其物理背景和其对控制系统带来的影响是必须的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iπ弟弟

如果可以的话,请杯咖啡吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值