YOLO(You Only Look Once)是一种先进的目标检测算法,最早由J. Redmon等人于2015年提出。它的目标是提升目标检测的速度和精度,特别是在实时目标识别应用中,YOLO的表现相较于之前的Region-based Convolutional Neural Network(R-CNN)架构有了很大的进步。
YOLO的工作原理:
简单来说,YOLO就是一次性对整个图像进行“扫描”,然后通过一个神经网络模型直接预测目标的边框(bounding boxes)和类别概率。这意味着,不需要像R-CNN那样先提取区域候选框,再进行分类和回归处理,YOLO省去了多次处理的步骤,大大提高了速度。
举个例子:
假设我们要用YOLO来识别图像中的人、车、猫等对象。传统的目标检测方法可能会先用滑动窗口的方法生成一些可能的候选框,然后对这些框逐一进行分类。而YOLO则直接将整张图片传入神经网络,网络会在一次处理的过程中,直接输出每个目标的边框和类别。例如,它可能会告诉你:“图片中的这个区域是一个车,概率是95%