在自然语言处理(NLP)中,预训练语言模型(LLMs, Large Language Models)通常基于不同的架构,如仅编码器的模型(Encoder-only)、编码器-解码器的模型(Encoder-Decoder),以及仅解码器的模型(Decoder-only)。这三种架构有着显著的区别,主要体现在功能、适用任务和性能上。下面从架构、功能、任务适用性、训练数据和推理能力等多个角度详细分析。
1. 架构(Architecture)
-
仅编码器的模型(Encoder-only LLMs)
- 该架构仅包含一个编码器网络,类似于BERT等模型。编码器主要负责将输入序列(如句子或文本片段)转换为一个高维的语义向量表示。
- 编码器通过自注意力机制学习输入文本的上下文关系,输出