【AI知识点】三种不同架构的大语言模型(LLMs)的区别

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


在自然语言处理(NLP)中,预训练语言模型(LLMs, Large Language Models)通常基于不同的架构,如仅编码器的模型(Encoder-only)、编码器-解码器的模型(Encoder-Decoder),以及仅解码器的模型(Decoder-only)。这三种架构有着显著的区别,主要体现在功能、适用任务和性能上。下面从架构、功能、任务适用性、训练数据和推理能力等多个角度详细分析。

1. 架构(Architecture)

  • 仅编码器的模型(Encoder-only LLMs)

    • 该架构仅包含一个编码器网络,类似于BERT等模型。编码器主要负责将输入序列(如句子或文本片段)转换为一个高维的语义向量表示。
    • 编码器通过自注意力机制学习输入文本的上下文关系,输出
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值