如何正确的导出onnx

1.对于任何用到shape,size返回值的参数时,例如:tensor.view(tensor.size(0),-1)这类操作,避免直接使用tensor.size的返回值,而是加上int转换,tensor.view(int(tensor.size(0)),-1)
2.对于nn.Upsamplenn.functional.interpolate函数,使用scale_factor指定倍率,而不是使用size参数指定大小
3.对于reshape、view操作时候,-1指定请放在batch维度。其他维度可以计算出来即可。batch维度禁止指定为大于-1的明确数字
4.torch.onnx.export指定dynamic_axes参数,并且只指定batch维度。我们只需要动态batch,相对动态的宽高有其他方案
5.使用opset_version=11,不要低于11
6.掌握了这些,就可以保证后面各种情况的顺利了

这些做法的必要性体现在,简化过程的复杂度,去掉gather、shape类的节点,很多时候,部分不这么改看似也是可以但是需求复杂后,依旧存在各类问题。按照说的这么做,基本可以。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值