人形机器人调研综述

摘  要:随着以ChatGTP为代表的人工智能通用大模型技术的加速发展和特斯拉人型机器人的产业化推进,人形机器人迎来高速发展期,并已成为大国科技竞争的一个新战略制高点。2023年以来国家和地方密集发布了多项相关政策,均强调加快推进人形机器人的技术研发和场景应用。人形机器人的安全运行依赖于可靠的地图构建,现有的同步定位和地图构建(SLAM)方法通常使用相机或者激光雷达构建地图。本文提出一种单线激光雷达与深度相机数据融合的SLAM方法。首先对深度相机数据进行预处理,然后标定出深度相机与激光雷达传感器的外参矩阵,之后利用得到的传感器外参矩阵将深度相机点云数据转换至激光雷达坐标系进行数据融合,最后将融合后的激光雷达扫描数据输入GMapping算法构建二维占据栅格地图。通过搭建Gazebo仿真环境验证所提出的融合方法的可行性与有效性,仿真实验结果表明该方法能够有效融合相机与激光雷达信息,检测地面微小障碍物,建立更加完善的占用栅格地图。针对传统人形机器人控制系统存在的软硬件模块化程度低、通讯非实时、控制功能有限的问题,以四核嵌入式控制器为操作平台,搭建了基于 EtherCAT 总线的人形机器人分布式实验控制系统,实现了机器人任务规划与决策、数据管理和系统通信等功能,具有灵活高效的网络拓扑结构、模块化的软件架构。

关键词:人形机器人;深度相机;激光雷达;传感器数据融合;EtherCAT总线

Humanoid robot

Abstract: With the accelerated development of artificial intelligence general large model technology represented by ChatGTP and the industrialization of Tesla humanoid robots, humanoid robots have entered a period of rapid development and have become a new strategic high ground for technological competition among major countries. Since 2023, the country and local governments have issued multiple relevant policies, all emphasizing the acceleration of technological research and development and scene application of humanoid robots. The safe operation of humanoid robots relies on reliable map building, and existing synchronous localization and map building (SLAM) methods typically use cameras or LiDAR to build maps. This article proposes a SLAM method for data fusion between single line LiDAR and depth camera.Firstly, preprocess the depth camera data, then calibrate the extrinsic matrix between the depth camera and the LiDAR sensor. Then, use the obtained sensor extrinsic matrix to convert the depth camera point cloud data to the LiDAR coordinate system for data fusion. Finally, input the fused LiDAR scanning data into the GMapping algorithm to construct a two-dimensional occupied grid map. The feasibility and effectiveness of the proposed fusion method were verified by building a Gazebo simulation environment. The simulation results showed that the method can effectively fuse camera and LiDAR information, detect small obstacles on the ground, and establish a more comprehensive occupied grid map. In response to the problems of low software and hardware modularity, non real-time communication, and limited control functions in traditional humanoid robot control systems, a distributed experimental control system for humanoid robots based on EtherCAT bus was built using a four core embedded controller as the operating platform. The system achieved functions such as robot task planning and decision-making, data management, and system communication, and had a flexible and efficient network topology and modular software architecture.

Key words: humanoid robot; lidar; depth camera; sensor data fusion;EtherCAT bus

1. 引言

人形机器人是一个非常复杂的多体系统(多近似为多刚体系统),它的多个自由度之间有很强的锅合性,它的系统描述(包括运动学描述和控制性能描述)是多组非常复杂的高阶非线性方程。人形机器人的稳定步行所需要解决的基础原理化问题仍然是目前研究面临的巨大困难。人形机器人的研究涵盖了计算机技术、传感器技术、电机拴制、人工智能、自动控制、机械机构学等相关学科,是一个国家科技实力和发展水平的重要标志,人形机器人技术的发展可带动相关学科的快速进步。日本是世界上最早开始研究人形机器人的国家,至今已有50余年,而我国从20世纪80年代中期才开始展开对人形机器人的研究工作,但是近年来地发展也是非常迅速,在人形机器人的研究领域取得了诸多优异的成绩,并在逐渐向国际领先水平靠拢[1]。2015 年,我国发布了《中国制造 2025》战略规划,将机器人技术的发展提高到了战略地步,可见国家对机器人技术的发展是多么的重视,今天,新一代的机器人已经渗透到

人类生活的各个领域之中,并正在逐渐改变人类生产生活的方式,在这项国策与背景之下,《中国制造 2025》战略计划将要把我国建设成世界上领先的机器人强国和制造强国,也是我国在新一轮科技革命和产业革命上的重大挑战。

人形机器人应具有与人类似的身体结构,包括头、躯干和四肢,使用双足行走,用多指手执行各种操作,并具有一定程度的认知和决策智能。作为通用化程度高、高度集成和智能化的机器人,人形机器人既需要极强的运动控制能力,也需要强大的感知和计算能力。其技术难点在于尽可能模仿人的各类场景下“感知-认知-决策-执行”的过程,涉及仿生感知认知技术、生机电融全技术、人工智能技术、大数据云计算技术、视深导航技术等各领域的尖端技术.环境感知模块主要负责数据采集与环境认知(视觉、声音、雷达、压感、光感)等传感器。人形机器人主要包含四大核心技术模块:

(1)环境感知模块主要负责数据采集与环境认知(视觉、声音、雷达、压感、光感)等传感器。

(2)智能AI芯片模块包括负责数据处理和算力的存储器和智能芯片。

(3)运动控制模块包括能量管理系统和动作执行系统(驱动器、控制器、减速器等)等。

(4)操作系统模块包括硬件抽象描述、底层驱动程序管理、共用功能的执行、程序间消息传递、程序发行包管理等。

人形机器人需要具备对外界环境的识别能力,实现导航、避障、交互等功能,需要使用传感器识别物体、测距等。机器视觉是AI深度学习的一种应用与技术方向,无论是人形机器人还是智能驾驶都是机器视觉的落地方向之一。机器视觉的本质是为机器植入“眼睛”,利用环境和物体对光的反射来获取及感知信息。通过机器视觉代替人眼可以在多种场景下实现多种功能,如读取二维码、确定零部件的装配位置等。

2. 深度相机

2.1深度相机的工作原理

ToF(Time of Flight)深度相机是通过测量光飞行时间来获取距离,具体而言就是给目标连续发射激光脉冲,然后利用传感器接收反射光线,通过探测光脉冲的飞行往返时间,得到目标的深度。

TOF相机采用主动光探测,通常包括以下几个部分:

1、照射单元

照射单元需要对光源进行脉冲调制之后再进行发射,调制的光脉冲频率可以高达100MHz。因此,在图像拍摄过程中,光源会打开和关闭几千次。各个光脉冲只有几纳秒的时长。相机的曝光时间参数决定了每次成像的脉冲数。要实现精确测量,必须精确地控制光脉冲,使其具有完全相同的持续时间、上升时间和下降时间。因为即使很小的只是一纳秒的偏差即可产生高达15 c m的距离测量误差。如此高的调制频率和精度只有采用精良的LED或激光二极管才能实现。一般照射光源都是采用人眼不可见的红外光源。

2、光学透镜

用于汇聚反射光线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

架构未来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值