基于PaddleX的YOLOv3林业病虫害检测


PaddleX简介PaddleX是飞桨全流程开发工具,集飞桨核心框架、模型库、工具及组件等深度学习开发所需全部能力于一身,打通深度学习开发全流程,并提供简明易懂的 Python API,方便用户根据实际生产需求进行直接调用或二次开发,为开发者提供飞桨全流程开发的最佳实践。目前,该工具代码已开源于 GitHub,同时可访问 PaddleX在线使用文档,快速查阅读使用教程和 API文档说明。
PaddleX代码GitHub链接https://github.com/PaddlePaddle/PaddleX/tree/develop
PaddleX文档链接https://paddlex.readthedocs.io/zh_CN/latest/index.html
PaddleX官网链接https://www.paddlepaddle.org.cn/paddle/paddlex

YOLOv3简介

YOLOv3是在YOLOv1YOLOv2的基础上,在保持速度优势的前提下,提升了预测精度,尤其是加强了对小物体的识别能力。本文档在一个小数据集上展示了如何通过PaddleX进行训练,您可以阅读文档使用教程-模型训练来了解更多模型任务的训练使用方式。

1. 安装PaddleX

!pip install paddlex -i https://mirror.baidu.com/pypi/simple

2. 准备昆虫目标检测数据集

!wget https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz
!tar xzf insect_det.tar.gz

3. 模型训练

3.1 配置GPU

# 设置使用0号GPU卡(如无GPU,执行此代码后仍然会使用CPU训练模型)
import matplotlib
matplotlib.use('Agg') 
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlex as pdx

3.2 定义图像处理流程transforms

定义数据处理流程,其中训练和测试需分别定义,训练过程包括了部分测试过程中不需要的数据增强操作,如在本示例中,训练过程使用了MixupImageRandomDistortRandomExpandRandomCropRandomHorizontalFlip共5种数据增强方式,更多图像预处理流程transforms的使用可参见paddlex.det.transforms

from paddlex.det import transforms


train_transforms = transforms.Compose([
    transforms.MixupImage(mixup_epoch=250),
    transforms.RandomDistort(),
    transforms.RandomExpand(),
    transforms.RandomCrop(),
    transforms.Resize(target_size=608, interp='RANDOM'),
    transforms.RandomHorizontalFlip(),
    transforms.Normalize(),
])

eval_transforms = transforms.Compose([
    transforms.Resize(target_size=608, interp='CUBIC'),
    transforms.Normalize(),
])

3.3 定义数据集Dataset

目标检测可使用VOCDetection格式和COCODetection两种数据集,此处由于数据集为VOC格式,因此采用pdx.datasets.VOCDetection来加载数据集,该接口的介绍可参见文档paddlex.datasets.VOCDetection

train_dataset = pdx.datasets.VOCDetection(
    data_dir='insect_det',
    file_list='insect_det/train_list.txt',
    label_list='insect_det/labels.txt',
    transforms=train_transforms,
    shuffle=True)
eval_dataset = pdx.datasets.VOCDetection(
    data_dir='insect_det',
    file_list='insect_det/val_list.txt',
    label_list='insect_det/labels.txt',
    transforms=eval_transforms)

3.4 模型开始训练

使用本数据集在P40上训练,如有GPU,模型的训练过程预估为40分钟左右;如无GPU,则预估为14小时左右。更多训练模型的参数可参见文档paddlex.det.YOLOv3。模型训练过程每间隔save_interval_epochs轮会保存一次模型在save_dir目录下,同时在保存的过程中也会在验证数据集上计算相关指标,具体相关日志参见文档

VisualDL的使用方式为将当前地址中的notebook替换为visualdl
例:

当前教程地址:https://aistudio.baidu.com/bdcpu/user/189619/442375/notebooks/442375.ipynb
VisualDL地址:https://aistudio.baidu.com/bdcpu/user/189619/442375/visualdl

# 如果要通过VisualDL查看日志页面,下没按这行代码需要执行
# aistudio上需要将日志输出到/home/aistudio/log目录下才可以查看VisuaDL界面
! rm -rf ~/log & rm -rf output/yolov3_darknet53
! mkdir -p output/yolov3_darknet53/vdl_log
! ln -s output/yolov3_darknet53/vdl_log ~/log

num_classes = len(train_dataset.labels)
model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
model.train(
    num_epochs=270,
    train_dataset=train_dataset,
    train_batch_size=8,
    eval_dataset=eval_dataset,
    learning_rate=0.000125,
    lr_decay_epochs=[210, 240],
    save_interval_epochs=20,
    save_dir='output/yolov3_darknet53',
    use_vdl=True)

4.模型预测

使用模型进行预测,同时使用pdx.det.visualize将结果可视化,可视化结果将保存到./output/yolov3_darknet53下,其中threshold代表Box的置信度阈值,将Box置信度低于该阈值的框过滤不进行可视化。

image_name = 'insect_det/JPEGImages/0217.jpg'
result = model.predict(image_name)
pdx.det.visualize(image_name, result, threshold=0.5, save_dir='./output/yolov3_darknet53')

可视化结果如下所示:

图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是天才很好

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值