激光SLAM理论与实践(五)--基于滤波器的激光SLAM方法(Grid-based)

本文介绍了基于滤波器的激光SLAM方法,特别是Grid-based技术。虽然该方法已非主流,但其重要性不言而喻。文章涵盖了贝叶斯滤波基础,包括最大后验估计与极大似然估计,并探讨了卡尔曼滤波与粒子滤波的特性及其在现实问题中的应用。
摘要由CSDN通过智能技术生成

Grid-based就是栅格地图,激光建图的主流。与之相对的是视觉建图的feature-based,也就是特征地图。
本章主要介绍基于滤波的激光SLAM方法,虽说这类方法不再是主流,但仍然值得我们去了解。主要介绍以下四种经典的方法:
在这里插入图片描述
首先就是贝叶斯滤波:贝叶斯可以说是状态估计的鼻祖了,基本都在用,只能说数学才是真的核心吧!
在这里插入图片描述
概率论的基本知识:
在这里插入图片描述
贝叶斯学派是和频率学派相区分的。
贝叶斯:最大后验估计:
频率:MLE方法:极大似然估计
在这里插入图片描述
贝叶斯滤波的推导:
卡尔曼滤波是贝叶斯线性的高斯的特例。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值