下面是论文中遇到的池化方法的总结
池化层是卷积神经网络中比较重要的一个层,他主要是为了降低与卷积层之间连接数所带来的计算负担。
1、Lp Pooling
它是以复杂细胞为模型的生物启发的池化过程。这个主要来源于论文[1],并且通过实验证明他的效果比max pooling效果好。
2、Mixed pooling(混合池化)
来源于论文[2],主要是结合了max pooling 和average pooling。
3、Stochastic pooling(随机池化)
论文来源于[3]。
4、Spectral pooling(光谱池化)
论文来源于[4]。
5、空间金字塔池化
主要来源于[5]。
6、Multi-scale Orderless Pooling(多尺度无序池化)
论文来源于[6]。
参考文献: