即插即用篇 | YOLOv8 引入 动态滤波器 DynamicFilter

在这里插入图片描述

在这里插入图片描述

论文名称:《FFT-based Dynamic Token Mixer for Vision》
论文地址:https://arxiv.org/pdf/2303.03932


装备多头自注意力(MHSA)的模型在计算机视觉领域取得了显著性能。然而,其计算复杂度与输入特征图中像素数的平方成正比,导致在处理高分辨率图像时处理速度较慢。为规避这一问题,提出了新型的token-mixer作为MHSA的替代方案:一种基于FFT的token-mixer,涉及类似MHSA的全局操作,但计算复杂度更低。然而,尽管该FFT-based token-mixer具有吸引人的特性,其与快速发展的MetaFormer架构的兼容性尚未得到深入研究。为此,我们提出了一种新的token-mixer,称为动态滤波器(Dy

### 实现动态感受野机制 为了在YOLOv8引入和实现动态感受野机制,可以借鉴LSKNet的设计理念[^3]。具体来说,在构建模型配置文件时,需修改主干网络部分以支持动态调整的目标感受野。 #### 修改模型配置文件 假设使用的是`yolov8_C3RFEM.yaml`作为基础配置文件,则可以在该文件中的适当位置加入新的层定义: ```yaml backbone: ... - from: [-1,] module: LSKBlock args: [dynamic_receptive_field=True, ] ``` 这里通过设置参数`dynamic_receptive_field=True`来启用动态感受野功能。此操作允许每一层根据输入特征图自动调节其感知区域大小,从而更好地捕捉不同尺度下的物体信息。 #### 自定义模块开发 如果官方库未提供满足需求的组件,则可能需要自定义开发相应的PyTorch Module类。下面是一个简单的例子展示如何创建具有可变感受野特性的卷积块: ```python import torch.nn as nn class DynamicReceptiveFieldConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(DynamicReceptiveFieldConv, self).__init__() # 定义标准卷积层 self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding) # 添加额外分支用于计算局部加权系数 self.attention_branch = SKAttention(channel=out_channels, reduction=8) def forward(self, x): conv_out = self.conv(x) attention_weights = self.attention_branch(conv_out) weighted_output = conv_out * attention_weights return weighted_output ``` 上述代码片段展示了如何结合SKAttention模块与常规卷积操作一起工作,使得输出不仅取决于原始滤波器响应,还受到基于通道间关系得出的关注度影响[^2]。 完成这些更改之后,按照正常流程加载并训练新版本的YOLOv8模型即可: ```python from ultralytics import YOLO model = YOLO(r'/projects/ultralytics/ultralytics/cfg/models/v8/yolov8_custom_dynamic_rf.yaml') model.train(device=[3], batch=16) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值