今天给大家分享一个能发一区的idea:即插即用的动态频域fft模块!
它是一种基于快速傅里叶变换(FFT)的算法,能够实时或接近实时地将时域信号转换为频域信号,使模型能更容易地提取信号或图像中的频域特征!
对提高模型性能、计算效率,减少内存占用等效果显著。且在音频处理、语音识别、图像处理等领域都有着广泛的应用!比如模型DF-RNN便在在医学图像处理任务中,实现了100%的准确率;而模型AFNO,则速度飙升了1000倍!此外,其还是即插即用的,能够轻松集成到现有的模型中,简单好上手!
为了让大家能够深入理解该方法,落地到自己的文章中,实现高效涨点,我给大家准备了12个最新的模块,配套的源码也都梳理了!
论文原文+开源代码需要的同学看文末
论文:FFT-Based Dynamic Token Mixer for Vision
内容
该论文提出了一种新的基于FFT(快速傅里叶变换)的动态令牌混合器(Dynamic Token Mixer),用于计算机视觉任务。该方法旨在解决传统多头自注意力(MHSA)模型在处理高分辨率图像时计算复杂度高、处理速度慢的问题,提出了DFFormer和CDFFormer两种新型图像识别模型,它们利用动态滤波器生成全局滤波器,以降低计算复杂性并提高处理效率。
论文:CasDyF-Net: Image Dehazing via Cascaded Dynamic Filters
内容
该论文介绍了一种名为CasDyF-Net的图像去雾方法,它通过级联动态滤波器创建一个多分支网络,动态生成基于特征图分布的滤波器核心。为了更好地处理分支特征,提出了一种残差多尺度块(RMB),结合了不同的接受域,并引入了一种基于动态卷积的局部融合方法来合并相邻分支的特征。
论文:A dynamic filtering DF-RNN deep-learning-based approach for EEG-based neurological disorders diagnosis
内容
该论文提出了一种基于深度学习的动态过滤方法DF-RNN,用于提高脑电图(EEG)信号处理在神经性疾病诊断中的性能,利用有限和无限脉冲响应(FIR和IIR)滤波器以及门控循环单元(GRU)的递归神经网络(RNN),来识别和预处理特定神经性疾病相关的信息量最大的子频带。
论文:SpinView: General Interactive Visual Analysis Tool for Multiscale Computational Magnetism
内容
该论文介绍了一个名为SpinView的交互式可视化工具,它用于多尺度计算磁学数据的分析。SpinView可以图形化地探索和提炼数据,并结合动态过滤器和内置数据库,快速生成可发表的高质量图像、视频或便携式交互网页,旨在简化工作流程,加速复杂数据集和轨迹的分析,并使新的分析类型和洞察成为可能。
论文:Causal Structure Recovery of Linear Dynamical Systems: An FFT based Approach
内容
该论文提出了一种基于快速傅里叶变换(FFT)的方法,用于从时间序列数据中恢复线性动态系统的因果结构。作者展示了如何利用FFT在频率域中表示时间序列,并通过考虑状态变量作为在给定频率下的随机变量来高效地执行因果推断。
关注下方《人工智能学起来》
回复“频域fft”获取全部论文+开源代码
码字不易,欢迎大家点赞评论收藏