SAM推导

参考文献

Frank Dellaert,Michael Kaess,The International Journal of Robotics Research,2006,Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing

模型

SLAM问题可以表示成置信网(belief net),因子图(factor graph),马尔可夫随机场(markov random field)。首先从置信网(也就是贝叶斯网络)的角度分析。
假设第 i i i时刻机器人的状态为 x i x_i xi i ∈ 0 i\in0 i0 … \dots M M M,路标为 l j l_j lj j ∈ 1 j\in1 j1 … \dots N N N,量测为 z k z_k zk k ∈ 1 k\in1 k1 … \dots K K K
对应上图的联合概率密度模型为 P ( X , L , Z , U ) = P ( x 0 ) ∏ i = 1 M P ( x i ∣ x i − 1 , u i ) ∏ k = 1 K P ( z k ∣ x i k , l j k ) P(X,L,Z,U) = P(x_0)\prod_{i=1}^M {P(x_i|x_{i-1},u_i)}\prod_{k=1}^K {P(z_k|x_{ik},l_{jk})} P(X,L,Z,U)=P(x0)i=1MP(xixi1,ui)k=1KP(zkxik,ljk)其中, P ( x 0 ) P(x_0) P(x0)表示初始状态, P ( x i ∣ x i − 1 , u i ) P(x_i|x_{i-1},u_i) P(xixi1,ui)表示运动模型, P ( z ∣ x , l ) P(z|x,l) P(zx,l)表示路标量测模型。引入标准的高斯模型, x i = f i ( x i − 1 , u i ) + w i    ⟺    P ( x i ∣ x i − 1 , u i ) ∝ e x p ( − 1 2 ∥ f i ( x i − 1 , u i ) − x i ) ∥ Λ i 2 ) x_i = f_i(x_{i-1},u_i) + w_i\iff P(x_i|x_{i-1},u_i) \propto exp(-\frac1{2} \Vert f_i(x_{i-1},u_i) - x_i) \Vert^2_{\Lambda_i} ) xi=fi(xi1,ui)+wiP(xixi1,ui)exp(21fi(xi1,ui)xi)Λi2)其中 f i ( ) f_i() fi()是一个process model, w i w_i wi是零均值高斯白噪声,协方差为 Λ i \Lambda_i Λi。量测模型为 z k = h k ( x i k , l j k ) + v k    ⟺    P ( z k ∣ x i k , l j k ) ∝ e x p ( − 1 2 ∥ h k ( x i k , l j k ) − z k ∥ Σ k 2 ) z_k = h_k(x_{ik},l_{jk}) + v_k \iff P(z_k|x_{ik},l{jk}) \propto exp(-\frac1{2}\Vert h_k(x_{ik},l_{jk}) - z_k \Vert^2_{\Sigma_k}) zk=hk(xik,ljk)+vkP(zkxik,ljk)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值