相机位置和朝向计算(世界坐标系下)

本文探讨了针孔相机模型中相机坐标系与世界坐标系的转换,通过避免矩阵求逆,解释了相机位置和朝向的推导,并介绍了相机模型从坐标系到图像坐标系的转化实例。深入浅出地为SLAM理解提供基础知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标:理解针孔相机模型,以及它在世界坐标系的转换。

前言:这篇blog,所用的 R , t R,t R,t都是相机坐外参。

1)相机坐标系和世界坐标系的转换,经常遇到它们的矩阵求逆的过程。但是矩阵逆变化对于计算机来说是很耗时间的。因此在另一中矩阵变化中,避免矩阵求逆的过程。它们的推导参考下面图像
请添加图片描述

2)相机位置(它指的是相机的中心点在世界坐标系的位置)
在传统的计算中,常常遇到相机位置这样的概念。这blog从推导的角度理解相机位置,以及它的推导。见下面图片。

请添加图片描述从图像中的推导可以看出,相机的坐标系就是 O w = − R T t O_w=-R^Tt Ow=RTt,这个推导更容易理解,且不用求逆等等操作。它其实跟相机的姿态的第 4 4 4列是等效的。后面将给予数值证明

3)相机的朝向(它指的是相机的 z z z轴在世界坐标系的朝向)
在传统的计算中,常常遇到相机朝向这样的概念。见下面推导。
请添加图片描述
从上述推导可以看出,相机的朝向是相机的外参旋转矩阵 R R R的第三行。

4)相机模型的转化(相机坐标系到图像坐标系的转化,见上一个blog),这里介绍深蓝学院的一个课程,如果对slam感兴趣可以搜索一下。讲的很详细。转化的过程,见下图。
请添加图片描述

图上理解基本的相机模型。对后续优化相机,有初步的理解。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值