题目:Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
motivation:
作者想找到anchor base 和anchor free 的区别,并设计一种anchor选取的方法。
method :

分析下RetinaNet和FCOS在算法上的差异,主要有以下3点:
- RetinaNet在特征图上每个点铺设多个anchor,而FCOS在特征图上每个点只铺设一个中心点,这是数量上的差异。
- RetinaNet基于anchor和GT之间的IoU和设定的阈值来确定正负样本,而FCOS通过GT中心点和铺设点之间的距离和尺寸来确定正负样本。这1点可以从下图的对比中看到,牛这张图像中蓝色框和点表示GT,红色框表示RetinaNet铺设的anchor,红色点表示FCOS铺设的点,左右两边类似表格上的数值表示最终确定的正负样本,0表示负样本,1表示正样本。
- RetinaNet通过回归矩形框的2个角点偏置进行预测框位置和大小的预测,而FCOS是基于中心点预测四条边和中心点的距离进行预测框位置和大小的预测。
ways:
提出本文的思想,自适应的选取正样本的方法,具体方法如下:
- 对于每个输出的检测层,选计算每个anchor的中心点和目标的中心点的L2距离,选取K个anchor中心点离目标中心点最近的anchor为候选正样本(cand
论文ATSS旨在弥合基于锚点和无锚点目标检测方法之间的差距,提出了一种自适应的训练样本选择策略。通过对RetinaNet和FCOS的比较,分析了它们在样本选择和预测方式上的差异。ATSS方法选择与目标中心点最近的K个anchor作为候选正样本,并基于IOU的均值和方差设置阈值来确定真正用于训练的正样本,从而优化目标检测性能。
最低0.47元/天 解锁文章
322

被折叠的 条评论
为什么被折叠?



