【深度学习知识点34】前馈层

深度学习前馈层的概念、结构与作用

前馈层是transformer的重要组成部分

基本概念

前馈层,又称为全连接层(Fully Connected Layer)或密集层(Dense Layer),是神经网络中最基础的组件之一。在Transformer模型中,前馈层通常出现在每一个Transformer编码器(Encoder)和解码器(Decoder)中的每一个自注意力(Self-Attention)层之后。

结构

线性变换:前馈层的输入首先经过一个线性变换,将输入映射到一个高维空间。这个线性变换通常由一个权重矩阵和一个偏置向量实现。
激活函数:经过线性变换后,输入会通过一个激活函数,增加模型的非线性表达能力。常用的激活函数包括ReLU、Sigmoid、Tanh等。
线性变换与输出:经过激活函数后,再进行一次线性变换,将高维空间的特征映射回原始空间,得到前馈层的输出。


作用

特征提取:前馈层通过线性变换和激活函数,可以提取输入数据的复杂特征,有助于模型更好地理解数据。
增加模型复杂度:通过增加前馈层的隐藏单元数量,可以增加模型的复杂度,提高模型的表达能力。
缓解梯度消失问题:在深度神经网络中,梯度消失是一个常见的问题。前馈层中的激活函数可以缓解这个问题,使得模型能够更好地训练。

参考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值