X-ray 2D和CT 3D图像配准流程和算法总结 Fluoro-image and CT 3D image registration flowwork and algorithm

X-ray 2D和CT 3D图像配准流程和算法总结 Fluoro-image and CT 3D image registration flowwork and algorithm

Reference to: Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery

之间已经讲过的内容包括相机的校准,transformation matrix转换矩阵的应用(空间坐标系和平面图像坐标系的传递)。那么基于上面的一些算法,再结合图像融合配准的算法,我们可以做些什么实际的应用呢?下面我将结合一个X-ray和CT图像的融合辅助手术导航的实例,帮助扩展一下思维。

X-ray和CT图像的融合配准分为下面几个步骤:

  1. CT 图像的三维重建,因为拿到了三维图像后,才可以更好的对应映射到X-ray二维的某一张图片上
  2. 接下来,通过C-arm可以获取到有效的 AP(anterposteria)和 LT(lateral)两个位置上的 X-ray 2D 图像,因为通过两张图片才能获取人体在空间坐标系中的坐标关系
  3. CT 3D image DDR image generation DRR可以生成有效的投影灰度图像,用于配准X-ray image
  4. 生成图像遮罩去遮盖 dynamic reference frame (DRF) of 2D X-ray 图像,这样确保了两个图像校准的准确定,以免DRF的一些特征去印象了校准的精度
  5. CT DRR 和 X-ray Fluoro 图像的配准
  6. Error measurement测试算法
    【fig1】

在这里插入图片描述
在六个过程中分别由对应的算法应用,总结如下:

IndexAlgorithm
1marching cube algorithm (W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163–169, 1987.)
2ray-casting algorithm hardware configuration: NVIDIA CUBA (GTX570) with 480 CUBA process
3calculated from two X-ray images
4region growth algorithm (RGA)
5graidient-based Powell’s method; geometric-based downhill simplex algorithm; probabilistic-based genetic algorithm (P. Markelj, D. Tomaˇzeviˇc, B. Likar, and F. Pernuˇs, “A review of 3D/2D registration methods for image-guided interventions,” Medical Image Analysis, vol. 16, no. 3, pp. 642–661, 2012.) (Y. Kim, K.-I. Kim, J. H. Choi, and K. Lee, “Novel methods for 3D postoperative analysis of total knee arthroplasty using 2D- 3D image registration,” Clinical Biomechanics, vol. 26, no. 4, pp. 384–391, 2011.)
6normalized cross correlation (NCC); Gradient correlation (GC); pattern intensity (PI); Gradient difference correlation (GDC); mutual information (MI) (G. P. Penney, J. Weese, J. A. Little, P.Desmedt,D. L.G.Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Transactions on Medical Imaging, vol. 17, no. 4, pp. 586–595, 1998.)

Marching cube algorithm
这个是个比较传统的3D建模算法,这是个标准的算法,网上有算式和算例,有兴趣可以去搜索一下,可以看到椭圆小球是用无数三角形拼接而成,每个边缘三角形都是defined block和实体的相交线构成
在这里插入图片描述

Initial coordinate matching
用Laplace算子找到边缘后,进行边缘中心的查找
对于传统CT图像,还需要对特征进行筛选,图像进行处理
在这里插入图片描述

Growing region algorithm
这个也比较容易实现,O(4*P) P:pixel; 比较容易理解,如果图品的分辨率越高,需要查找的特征越大,肯定需要计算的时间越长
在这里插入图片描述

### 回答1: 2D-3D图像配准是将二维图像与三维模型进行匹配,实现二者之间的空间对齐。下面是一个示例的2D-3D图像配准算法代码: ``` import cv2 import numpy as np def find_homography(image1, image2): # 提取图片1和图片2的特征点 sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(image1, None) kp2, des2 = sift.detectAndCompute(image2, None) # 特征点匹配 bf = cv2.BFMatcher(cv2.NORM_L2) matches = bf.knnMatch(des1, des2, k=2) # 筛选优秀的匹配点 good_matches = [] for m, n in matches: if m.distance < 0.75 * n.distance: good_matches.append(m) # 计算匹配点对应的坐标 src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) # 计算单应性矩阵 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) return M def render_3d_model(image, model, homography): # 根据单应性矩阵将图像中的特征点映射到模型空间中 warped_image = cv2.warpPerspective(image, homography, (model.shape[1], model.shape[0])) # 在模型空间中以特定颜色渲染图像 rendered_model = np.zeros_like(model, dtype=np.uint8) rendered_model[np.where((model == [0, 0, 0]).all(axis=2))] = warped_image[np.where((model == [0, 0, 0]).all(axis=2))] return rendered_model # 读取二维图像和三维模型 image = cv2.imread('image.jpg') model = cv2.imread('model.obj') # 进行2D-3D图像配准并渲染 homography = find_homography(image, model) rendered_model = render_3d_model(image, model, homography) # 显示配准结果 cv2.imshow('Rendered Model', rendered_model) cv2.waitKey(0) cv2.destroyAllWindows() ``` 以上代码通过提取图像的特征点并进行匹配,计算出单应性矩阵,将图像中的特征点映射到模型空间中,最后在模型空间中渲染图像,实现2D-3D图像配准并可视化配准结果。 ### 回答2: 2D-3D图像配准算法是将一个二维图像与一个三维模型进行对齐的过程,通常用于医学影像中的图像配准,如CT图像和MRI图像。 其中,最常用的2D-3D图像配准算法是基于体素的配准方法。其主要步骤如下: 1. 定义一个粗略的初值,通常是通过特征匹配得到的。 2. 将三维模型转换为二维图像,即生成一个虚拟的CT或MRI图像。 3. 将虚拟图像与真实二维图像进行相似度度量,比如使用互相关系数或互信息等。 4. 通过最小化相似度度量函数,调整虚拟图像在真实图像中的位置。 5. 迭代执行步骤4,直到达到收敛的准确度或最大迭代次数。 这个算法的代码实现可以使用编程语言如Python或C++等。以下是一个简单的示例代码: ```python import numpy as np import cv2 def voxel_based_registration(virtual_image, real_image, initial_pose, max_iterations=100, tolerance=1e-6): pose = initial_pose last_loss = np.inf for iteration in range(max_iterations): transformed_image = transform_image(virtual_image, pose) loss = calculate_similarity(real_image, transformed_image) if np.abs(loss - last_loss) < tolerance: break gradient = calculate_gradient(virtual_image, real_image, transformed_image) pose -= gradient last_loss = loss return pose def transform_image(image, pose): # TODO: 实现图像变换 def calculate_similarity(image1, image2): # TODO: 计算相似度度量 def calculate_gradient(image1, image2, transformed_image): # TODO: 计算梯度 # 虚拟图像,即待配准的三维模型转换成的二维图像 virtual_image = cv2.imread('virtual_image.png', 0) # 真实图像,即待配准的二维图像 real_image = cv2.imread('real_image.png', 0) # 初始化位姿 initial_pose = np.zeros((6, 1)) # 进行配准 final_pose = voxel_based_registration(virtual_image, real_image, initial_pose) ``` 需要注意的是,上述代码只是一个简单的示例,真正的2D-3D图像配准算法会根据具体需求进行优化和改进。 ### 回答3: 2D-3D图像配准算法是将一个二维图像与一个三维模型进行匹配,以实现二维图像在三维场景中的准确定位和重建。下面是一个简单的2D-3D图像配准算法的代码示例: ```python import numpy as np # 第一步:读取二维图像和三维模型数据 image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 二维图像数据 model = np.array([[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]], [[7, 7, 7], [8, 8, 8], [9, 9, 9]]]) # 三维模型数据 # 第二步:图像配准的核心算法 def image_registration(image, model): # 将二维图像转换为一维数组 image_vector = image.flatten() # 计算二维图像和三维模型之间的差异度 differences = [] for i in range(len(model)): model_vector = model[i].flatten() difference = np.sum(np.abs(image_vector - model_vector)) differences.append(difference) # 找到差异度最小的序号作为匹配结果 min_index = np.argmin(differences) # 返回匹配结果 return min_index # 第三步:调用图像配准算法并输出结果 matching_result = image_registration(image, model) print("匹配结果: ", matching_result) ``` 以上代码中,假设我们有一个3x3的二维图像和一个3x3x3的三维模型。图像配准的核心算法是将二维图像转换为一维数组,并计算二维图像和三维模型之间的差异度。最后,找到差异度最小的序号作为匹配结果。 这只是一个简单的示例,实际的2D-3D图像配准算法可能更加复杂和精确,涉及更多的数学和计算机视觉技术。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值