【连续介质力学】弹性与超弹性、粘弹性、弹塑性、柯西弹性

本文介绍了弹性材料的不同类型及其特点,包括超弹性、粘弹性、弹塑性和柯西弹性等,并详细解释了它们之间的区别。同时给出了柯西应变与格林应变的计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

弹性就是受到变形之后能够恢复原状。
超弹性是弹性的一种特殊情况。超弹性的特点是弹性力是保守的,即与路径无关。所谓路径无关,就是你先在x方向拉伸,再在y方向拉伸,和先在y方向拉伸,再在x方向拉伸,其效果是完全一样的。此外。1948年,Rivilin和Mooney发展了第一个超弹性模型,即Neo-Hookean模型(或称Mooney-Rivilin材料)。超弹性又被称为格林弹性。

粘弹性也是弹性的一种。粘弹性材料的特点是它能恢复原状,但是恢复得越来越慢。能量因为粘性耗散了。

弹塑性不是弹性的一种。弹塑性是介于弹性与塑性之间的。塑性的特点是无法恢复原状。这点与弹性相对。

还有一种弹性的特殊情况,叫柯西弹性材料。柯西弹性的特点是应力仅仅与当前的变形状态有关,与之前的状态(初始构形以前)无关。此时应力与应变是一一对应的。也就是说应力与应变是单值函数的关系。且柯西弹性遵循局部性原理,即变形只影响局部区域。材料是柯西弹性材料意味着:应力仅取决于形变梯度F。柯西弹性又被称之为简单弹性。

注意:超弹性是柯西弹性的一种特殊情况。

柯西弹性(简单弹性)与格林弹性(超弹性)的区别在于:柯西弹性指应力应变有单值连续关系(即一一对应);格林弹性不仅如此,还存在势函数(即应变能密度函数,或称势能密度函数)。

注意2:不论是超弹性还是柯西弹性,都不一定是线弹性。线弹性只是最简单的一种情况。他们没有假定应力应变关系必须是线性的。

柯西应变与格林应变

柯西应变的计算公式为
ε C = 1 2 ( ∇ u + ( ∇ u ) T ) \varepsilon_C = \frac{1}{2}(\nabla u + (\nabla u)^T ) εC=21(u+(u)T)

格林应变为
ε G = 1 2 ( ∇ u + ( ∇ u ) T + ( ∇ u ) T ( ∇ u ) ) \varepsilon_G = \frac{1}{2}(\nabla u + (\nabla u)^T + (\nabla u)^T (\nabla u) ) εG=21(u+(u)T+(u)T(u))

可见就差了最后一项。

其中速度梯度表示为矩阵形式可以写成
∇ u = [ u , x u , y u , z v , y v , y v , z w , y w , y w , z ] \nabla u = \begin{bmatrix} u_{,x} & u_{,y} & u_{,z}\\ v_{,y} & v_{,y} & v_{,z}\\ w_{,y} & w_{,y} & w_{,z} \end{bmatrix} u=u,xv,yw,yu,yv,yw,yu,zv,zw,z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值