卡尔曼滤波器 1_递归算法_Recursive

卡尔曼滤波器 1_递归算法_Recursive

Filter(滤波器)可以看成是 Optimal Recursive Data Processing Algorithm 最优化递归数字处理算法,是一种观测器,不是一般的滤波器。他的存在是因为我们生活中总是存在不确定性,

  1. 不存在完美的数学模型
  2. 系统的扰动
  3. 测量传感器存在误差

例子:用一个尺子测量一枚硬币的直径,因为尺子的误差以及测量的硬币不同会使测量结果 Z k Z_k Zk存在一定的误差,下标 k k k为第 k k k次测量。此时有测量结果 z 1 , z 2 . . . z k z_1,z_2...z_k z1,z2...zk,此时我们想要估计出真实数据,会自然的去取平均值:
x ^ k = 1 k ( z 1 + z 2 + ⋯ + z k ) = 1 k ( z 1 + z 2 + ⋯ + z k − 1 ) + 1 k z k = 1 k k − 1 k − 1 ( z 1 + z 2 + ⋯ + z k − 1 ) + 1 k z k = k − 1 k x ^ k − 1 + 1 k z k = x ^ k − 1 − 1 k x ^ k − 1 + 1 k z k ⇒ x ^ k = x ^ k − 1 + 1 k ( z k − x ^ k − 1 ) \begin{aligned} \hat{x}_{k} &=\frac{1}{k}\left(z_{1}+z_{2}+\cdots+z_{k}\right) \\ &=\frac{1}{k}\left(z_{1}+z_{2}+\cdots+z_{k-1}\right)+\frac{1}{k} z_{k} \\ &=\frac{1}{k} \frac{k-1}{k-1}\left(z_{1}+z_{2}+\cdots+z_{k-1}\right)+\frac{1}{k} z_{k} \\ &=\frac{k-1}{k} \hat{x}_{k-1}+\frac{1}{k} z_{k} \\ &=\hat{x}_{k-1}-\frac{1}{k}\hat{x}_{k-1}+\frac{1}{k}z_{k}\\ \Rightarrow \quad \hat{x}_{k} &= \hat{x}_{k-1}+\frac{1}{k}\left(z_{k}-\hat{x}_{k-1}\right) \end{aligned} x^kx^k=k1(z1+z2++zk)=k1(z1+z2++zk1)+k1zk=k1k1k1(z1+z2++zk1)+k1zk=kk1x^k1+k1zk=x^k1k1x^k1+k1zk=x^k1+k1(zkx^k1)
我们简单的分析以下最后的式子,随着k的增加,测量结果不再重要了;k值较小时,也就是测量的次数少时, z k z_k zk,也就是测量结果的作用较大。
1 k = K k \frac{1}{k}=K_k k1=Kk
x ^ k = x ^ k − 1 + K k ( z k − x ^ k − 1 ) \hat{x}_{k} = \hat{x}_{k-1}+K_k\left(z_{k}-\hat{x}_{k-1}\right) x^k=x^k1+Kk(zkx^k1)
也就是当前的估计值=上一次的估计值+系数X(当前测量值-上一次的估计值)在卡尔曼滤波器中这个 K k K_k Kk就是Kalman Gain 卡尔曼增益/因数。我们通过这个式子可以看出,此时的估计值与上一次的估计值有关,上一次的估计值与上上一次的估计值有关(不需要追溯很久以前的估计值,也是卡尔曼滤波器的优势)这就是递归的思想。
这里我们对这个 K k K_k Kk进行一个简单的讨论,引入两个参数,估计误差(估计值与真实值的误差) e E S T e_{EST} eEST,测量误差(测量值与真实值的误差) e M E A e_{MEA} eMEA,此时
K k = e E S T k − 1 e E S T k − 1 + e M E A k K_k = \frac{{e_{EST}}_{k-1}}{{e_{EST}}_{k-1}+{e_{MEA}}_{k}} Kk=eESTk1+eMEAkeESTk1这是卡尔曼滤波器的核心公式,后续学习他是怎么推导出来的,现在进行一个讨论:
k k k时刻: e E S T k − 1 > > e M E A k {e_{EST}}_{k-1}>>{e_{MEA}}_{k} eESTk1>>eMEAk,此时可以通过上式看出 K k K_k Kk趋近于1,所以 x ^ k = x ^ k − 1 + z k − x ^ k − 1 = z k \hat{x}_{k} = \hat{x}_{k-1}+z_{k}-\hat{x}_{k-1}=z_{k} x^k=x^k1+zkx^k1=zk,这就说明了在 k − 1 k-1 k1时刻的估计误差远远大于 k k k时刻的测量误差时, k k k时刻的估计值趋近于 k k k时刻的测量值。也就是估计的误差大,我们更相信测量值;反之,当 k − 1 k-1 k1时刻的估计误差远远小于 k k k时刻的测量误差时, K k K_k Kk趋近于0,我们也就更相信估计值。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

船在海上,

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值