一阶惯性环节正弦响应的推导

1 惯性环节推导

以下《自动控制原理》中一阶惯性环节正弦响应的推导。

如图所示一阶惯性环节,即LPF低通滤波器。

根据基尔霍夫电压定律可得:
u i ( t ) − C 1 d u o ( t ) d t R 1 = u o ( t ) u_{i}(t)-C_1\frac{du_o(t)}{dt}R_1=u_o(t) ui(t)C1dtduo(t)R1=uo(t)

上式化简可得:
u i ( t ) = R 1 C 1 d u o ( t ) d t + u o ( t ) u_i(t)=R_1C_1\frac{du_o(t)}{dt}+u_o(t) ui(t)=R1C1dtduo(t)+uo(t)
上式进行拉普拉斯变换:
u i ( s ) = R 1 C 1 s u o ( s ) − R 1 C 1 u o ( 0 ) + u o ( s ) u_i(s)=R_1C_1su_o(s)-R_1C_1u_o(0)+u_o(s) ui(s)=R1C1suo(s)R1C1uo(0)+uo(s)
R 1 C 1 = T R_1C_1=T R1C1=T

得到:
u o ( s ) = 1 T s + 1 [ u i ( s ) + T u o ( 0 ) ] u_o(s)=\frac{1}{Ts+1}[u_i(s)+Tu_o(0)] uo(s)=Ts+11[ui(s)+Tuo(0)]

2 正弦信号响应推导

令输入 u i ( s ) = A s i n ω t u_i(s)=Asin\omega t ui(s)=Asinωt,则有:
u o ( s ) = 1 T s + 1 [ A ω s 2 + ω 2 + T u o ( 0 ) ] = 1 T s + 1 A ω s 2 + ω 2 + T T s + 1 u o ( 0 ) = A ω F 1 ( s ) + F 2 ( s ) \begin{aligned} u_o(s)&=\frac{1}{Ts+1}[\frac{A\omega}{s^2+\omega^2}+Tu_o(0)]\\ &=\frac{1}{Ts+1}\frac{A\omega}{s^2+\omega^2}+\frac{T}{Ts+1}u_o(0)\\ &=A\omega F_1(s)+F_2(s) \end{aligned} uo(s)=Ts+11[s2+ω2Aω+Tuo(0)]=Ts+11s2+ω2Aω+Ts+1Tuo(0)=AωF1(s)+F2(s)

L − 1 [ F 1 ( s ) ] = ( T 2 1 + ω 2 T 2 ) 1 T s + 1 + ( 1 − 2 ω j − 2 ω 2 T ) 1 s + j ω + ( 1 2 ω j − 2 ω 2 T ) 1 s − j ω = ( T 1 + ω 2 T 2 ) e − 1 T t + ( − 2 ω 2 T + 2 ω j 4 w 4 T 2 + 4 ω 2 ) e − j w t + + ( − 2 ω 2 T − 2 ω j 4 w 4 T 2 + 4 ω 2 ) e j w t = ( T 1 + ω 2 T 2 ) e − 1 T t + ( − 2 ω 2 T + 2 ω j 4 w 4 T 2 + 4 ω 2 ) ( cos ⁡ ω t − j sin ⁡ ω t ) + ( − 2 ω 2 T − 2 ω j 4 w 4 T 2 + 4 ω 2 ) ( cos ⁡ ω t + j sin ⁡ ω t ) = ( T 1 + ω 2 T 2 ) e − 1 T t + 1 4 w 4 T 2 + 4 ω 2 [ − 4 ω 2 T cos ⁡ ω t + 4 ω s i n ω ( t ) ] = ( T 1 + ω 2 T 2 ) e − 1 T t + 1 w 4 T 2 + ω 2 [ − ω 2 T cos ⁡ ω t + ω s i n ω ( t ) ] = ( T 1 + ω 2 T 2 ) e − 1 T t + 1 w 4 T 2 + ω 2 1 w 4 T 2 + ω 2 [ − ω 2 T cos ⁡ ω t + ω s i n ω ( t ) ] = ( T 1 + ω 2 T 2 ) e − 1 T t + 1 w 4 T 2 + ω 2 [ − ω 2 T w 4 T 2 + ω 2 cos ⁡ ω t + ω w 4 T 2 + ω 2 s i n ω ( t ) ] = ( T 1 + ω 2 T 2 ) e − 1 T t + 1 w 4 T 2 + ω 2 sin ⁡ ( ω t − ϕ ) \begin{aligned} L^{-1}[F_1(s)]&=\left(\frac{T^2}{1+ \omega^2T^2} \right)\frac{1}{Ts+1} +\left(\frac{1}{-2\omega j-2\omega^2T} \right)\frac{1}{s+j\omega}+\left( \frac{1}{2\omega j-2\omega^2T} \right)\frac{1}{s-j\omega}\\ &=\left(\frac{T}{1+ \omega^2T^2} \right)e^{-\frac{1}{T}t} +\left(\frac{-2\omega^2T+2\omega j}{4w^4T^2+4\omega^2} \right)e^{-jwt}+ +\left(\frac{-2\omega^2T-2\omega j}{4w^4T^2+4\omega^2} \right)e^{jwt}\\ &=\left(\frac{T}{1+ \omega^2T^2} \right)e^{-\frac{1}{T}t} +\left(\frac{-2\omega^2T+2\omega j}{4w^4T^2+4\omega^2} \right)(\cos\omega t-j\sin\omega t) +\left(\frac{-2\omega^2T-2\omega j}{4w^4T^2+4\omega^2} \right)(\cos\omega t+j\sin\omega t)\\ &=\left(\frac{T}{1+ \omega^2T^2} \right)e^{-\frac{1}{T}t}+\frac{1}{4w^4T^2+4\omega^2}[-4\omega^2T\cos\omega t+4\omega sin\omega(t)]\\ &=\left(\frac{T}{1+ \omega^2T^2} \right)e^{-\frac{1}{T}t}+\frac{1}{w^4T^2+\omega^2}[-\omega^2T\cos\omega t+\omega sin\omega(t)]\\ &=\left(\frac{T}{1+ \omega^2T^2} \right)e^{-\frac{1}{T}t}+\frac{1}{\sqrt{w^4T^2+\omega^2}}\frac{1}{\sqrt{w^4T^2+\omega^2}}[-\omega^2T\cos\omega t+\omega sin\omega(t)]\\ &=\left(\frac{T}{1+ \omega^2T^2} \right)e^{-\frac{1}{T}t}+\frac{1}{\sqrt{w^4T^2+\omega^2}}[\frac{-\omega^2T}{\sqrt{w^4T^2+\omega^2}}\cos\omega t+\frac{\omega}{\sqrt{w^4T^2+\omega^2}} sin\omega(t)]\\ &=\left(\frac{T}{1+ \omega^2T^2} \right)e^{-\frac{1}{T}t}+\frac{1}{\sqrt{w^4T^2+\omega^2}}\sin(\omega t-\phi)\\ \end{aligned} L1[F1(s)]=(1+ω2T2T2)Ts+11+(2ωj2ω2T1)s+1+(2ωj2ω2T1)s1=(1+ω2T2T)eT1t+(4w4T2+4ω22ω2T+2ωj)ejwt++(4w4T2+4ω22ω2T2ωj)ejwt=(1+ω2T2T)eT1t+(4w4T2+4ω22ω2T+2ωj)(cosωtjsinωt)+(4w4T2+4ω22ω2T2ωj)(cosωt+jsinωt)=(1+ω2T2T)eT1t+4w4T2+4ω21[4ω2Tcosωt+4ωsinω(t)]=(1+ω2T2T)eT1t+w4T2+ω21[ω2Tcosωt+ωsinω(t)]=(1+ω2T2T)eT1t+w4T2+ω2 1w4T2+ω2 1[ω2Tcosωt+ωsinω(t)]=(1+ω2T2T)eT1t+w4T2+ω2 1[w4T2+ω2 ω2Tcosωt+w4T2+ω2 ωsinω(t)]=(1+ω2T2T)eT1t+w4T2+ω2 1sin(ωtϕ)
其中, ϕ = arctan ⁡ ( w T ) \phi=\arctan(wT) ϕ=arctan(wT)

L − 1 [ F 2 ( s ) ] = u o ( 0 ) e − 1 T t L^{-1}[F_2(s)]=u_o(0)e^{-\frac{1}{T}t} L1[F2(s)]=uo(0)eT1t
则:
L − 1 [ u o ( s ) ] = A ω F 1 ( s ) + F 2 ( s ) = ( u o ( 0 ) + A ω T 1 + ω 2 T 2 ) e − 1 T t + A ω ω 4 T 2 + ω 2 sin ⁡ ( ω t − arctan ⁡ ( ω T ) = ( u o ( 0 ) + A ω T 1 + ω 2 T 2 ) e − 1 T t + A ω 2 T 2 + 1 sin ⁡ ( ω t − arctan ⁡ ω T ) \begin{aligned} L^{-1}[u_o(s)]&=A\omega F_1(s)+F_2(s)\\ &=\left(u_o(0)+\frac{A\omega T}{1+\omega^2T^2} \right)e^{-\frac{1}{T}t}+\frac{A\omega}{\sqrt{\omega^4T^2+\omega^2}}\sin(\omega t-\arctan(\omega T)\\ &=\left(u_o(0)+\frac{A\omega T}{1+\omega^2T^2} \right)e^{-\frac{1}{T}t}+\frac{A}{\sqrt{\omega^2T^2+1}}\sin(\omega t-\arctan\omega T) \end{aligned} L1[uo(s)]=AωF1(s)+F2(s)=(uo(0)+1+ω2T2AωT)eT1t+ω4T2+ω2 Aωsin(ωtarctan(ωT)=(uo(0)+1+ω2T2AωT)eT1t+ω2T2+1 Asin(ωtarctanωT)
第一项为瞬态分量,由于 T > 0 T>0 T>0,第一项随时间减小,第二项为稳态分量,输出信号与输入信号的比值为: 1 ω 2 T 2 + 1 \frac{1}{\sqrt{\omega^2T^2+1}} ω2T2+1 1

3 仿真结果

令系统的T=1,输入为 u i ( t ) = s i n ( t ) u_i(t)=sin(t) ui(t)=sin(t)
输出为:

瞬态分量,稳态分量分别为:

稳态与瞬态分量的叠加与图一直接输出的值对比,是一致的。

伯德图为:

验证:信号输出理论值为: 1 ω 2 T 2 + 1 = 0.707 \frac{1}{\sqrt{\omega^2T^2+1}}=0.707 ω2T2+1 1=0.707,伯德图为: 20 lg ⁡ ( 1 ω 2 T 2 + 1 ) = − 3.0103 20\lg(\frac{1}{\sqrt{\omega^2T^2+1}})=-3.0103 20lg(ω2T2+1 1)=3.0103,从图中可以看到,结果与理论值一致。

  • 21
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值