基于多传感器融合的机器人嗅觉感知系统
摘要
针对人类对外界气体的嗅觉感知功能,研究机器人的嗅觉感知该系统,通过多气体传感器信息的融合完成对未知气体的定量测量。
1 绪论
重点在于多传感器信息融合。多传感器信息融合的基本原理就像人脑综合处理信息的过程一样,充分利用多传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各传感器在时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。其最终目的是利用多个传感器共同或联合操作的又是提高整个传感器系统的有效性。
信息融合分为三个等级:信号级、特征级和决策级。
信号级融合是直接将各传感器采集的原始数据进行关联,完成对被测对象的综合评价。特征级融合指利用从传感器获得的原始数据中提取的充分表示量或充分统计量作为其特征信息,然后对它们进行分类、聚类和综合,再进行数据关联和归一化等处理,完成对被测对象的综合评价。其优点在于保留了足够数量的原始信息,实现了一定的数据压缩,有利于实时处理,并且所提取特征直接与决策分析有关,因而融合结果能最大限度的给出决策分析所需要的特征信息。决策级融合是直接针对具体决策目标的,融合结果直接影响决策水平
在机器嗅觉中的多传感器信息融合可分为两类:低级融合和高级融合。低级融合是对传感器数据直接进行集成,其主要应用在对气体的模式识别部分。高级融合是在一个层次化的结构中,对不同模块提供的控制信号进行分配或集成,从而对传感器数据进行间接融合。其主要应用于移动机器人