第1步:
模型调参过程主要遵循以下原则:(1)区域地下水均衡原则,即各源汇项和储存量基本与计算结果保持一致;(2)区内各观测点的模拟水位与实测水位动态一致;(3)模拟的渗流场与实测基本保持一致,能反映地下水渗流场的空间分布特征;(4)调整后的水文地质参数符合玛纳斯河流域岩性空间变化规律。 以实际观测水位与模拟计算水位的拟合以及区域水均衡为模型率定的依据,不断调整各分区的水文地质参数,使两者之间的拟合效果达到最合理状态,即可认为水文地质参数代表含水层的参数。需要说明的是,参数调整过程中综合考虑研究区地下水渗流场特征及区域水均衡状态,而不单追求水位拟合曲线的完全吻合。由于本次模拟以稳定流模拟结果作为初始地下水流场,此次模型率定则以观测孔(见图5.12)的水位拟合、地下水渗流场的空间分布特征以及区域水均衡拟合作为模型率定的标准。
第2步:
5.3.3.2 模型的识别 (1)地下水流场拟合 模型验证期潜水含水层的流场拟合结果如图5.15所示。从图5.15可以看出,验证期末刻实测水位与模拟计算的水位相比较,计算值与模拟值存在1~2 m,总体上流场变化趋势基本趋于一致,平面流场总体拟合效果较好。
第3步:
(2)观测孔水位拟合 研究区内分布有12眼连续性观测数据的地下水位动态监测井,具体位置见图5.12,各水位观测井的详细信息见表3.1。根据地下水位监测情况,本次研究选取了部分观测井(M1、M2、M3、M5、M7、M9、M10和M11)2016年8月至2017年7月的监测资料进行对比。研究区观测井模拟水位与实测水位的拟合如图5.16所示。从图5.15可以看出,大多数观测孔拟合度较高,模拟水位与实测水位整体变化趋势较一致。从地下水流场与观测孔水位拟合可以看出所构建的地下水模拟具有较高的仿真度和可靠性。
第4步:
(3)水量均衡对比 数值模拟结果与均衡法计算结果对比分析如表5.5所示。从表5.5可以看出,总补给量与总排泄量的计算上两种方法基本一致,误差分别为5.2%和3.8%,其中分项数据因处理方式不同会存在差异,尤其是河流入渗和侧向径流补给,主要由于河水位和上游观测孔水位难以准确确定。总体上,水位动态拟合和均衡结果显示数值模拟结果是比较可靠的。
第5步:
5.3.3.3 参数识别结果 从观测孔的水位拟合和区域水量均衡对比来看,其宏观规律基本保持一致,误差满足模型精度要求。各含水层优化后的参数分区(见图5.17)及其对应的水文地质参数如表5.6所示。可以看出含水层的水文地质参数符合前人抽水试验结果和研究区第四系岩性变化规律。模型识别优化后的水文地质参数可以比较准确的对研究区第四系地下水流系统进行仿真模拟。
第6步:
综上所述,在进行玛纳斯河流典型平原区数值模拟时,地下水位观测孔拟合效果较好,模型计算的水均衡量与均衡法计算的结果满足误差要求,模型识别优化后的水文地质参数、参数分区与水文地质条件基本相符,反应了区域地下水流系统特征,模型具有较好的仿真性,可用来模拟区域内地下水渗流场及预测未来流场的变化。
第7步:
第8步: